FILAMENT WINDING - A TRADITIONAL MANUFACTURING METHOD REINVENTED

CO-HOSTED BY:

Composites Knowledge Network

compositeskn.org

nasampe.org

THE PRESENTER

Pierre Mertiny, Ph.D, P.Eng.

Professor in Mechanical Engineering, University of Alberta Associate Dean (Undergraduate Programs), Faculty of Engineering Principal Investigator - Advanced Composite Materials Engineering Group

- Over 20 years of experience in R&D from technology conception to prototyping in the field of polymers and polymer composites
- Focus on energy industry and energy storage applications
- Collaborated nationally and internationally as university researcher and worked as private consultant
- Executive Member of Pressure Vessel and Piping Division of the American Society for Mechanical Engineers (ASME)
- Past President of the Canadian Association for Composite Structures and Materials (CACSMA)

KNOWLEDGE IN PRACTICE CENTRE (KPC)

• A freely available online resource for composite materials engineering:

compositeskn.org/KPC

• Focus on practice, guided by foundational knowledge and a systems-based approach to thinking about composites manufacturing

https://compositeskn.org/KPC

PAST WEBINAR RECORDINGS AVAILABLE

Past Web

HOSTED BY:

Composites Knowledge Network

Past Webinar Recordings: https://compositeskn.org/KPC/A115

Canada

4

HOSTED BY:

san

TODAY'S TOPIC:

Filament Winding - A traditional manufacturing method reinvented

https://compositeskn.org/KPC/A370

OUTLINE

Introduction FW systems

FW basics, FW machines, Fibers and creels, Fiber delivery and tensioning equipment, Resin impregnation, Mandrels, Curing

• FW Process

Process Parameters and control, Fiber band and interweaving

Engineering Design for FW

Material systems, Liners, Additional considerations

• Testing and Quality Control

Overview

Emerging Technologies

Materials systems, Multifunctional composites, Embedded sensors

• Application Examples

Filament-wound structures in industry

HOSTED BY:

Canada

FW basics

• Wet filament winding (additive manufacturing) End dwell Continuous fiber strands Carriage Separator Nip rollers guide combs Bath resin Creel **Rotating mandrel**

Image source: Author; Reproduced from Nuplex Industries Ltd. 2014

https://compositeskn.org/KPC/A215#Filament_Winding

FW machines

- Commonly 4-axis machines
 - Mandrel rotation
 - Carriage translation, cross feed
 - Guide rotation (bar, ring or roller)
- Continuous FW equipment
 - Product translates in axial direction with fiber feed stationary
 - More complex equipment
 - Rapid production
 - Avoid waste (end dwell)
 - Used mainly for tubular product

Source: Magnum Venus Products

FW machines

- Guides
 - Wet FW provides 'lubrication' to avoid friction of fibers so static guides are suitable
 - Rollers/pulleys avoid friction but increase cleaning needs
 - Material selection for guides important (e.g., stainless steel, PTFE)
- Cleaning
 - Often overlooked
 - Wet FW inherently messy
 - Process design important to reduce costs and environmental impact (use of solvents like acetone)

Source: McClean Anderson

Fibers and creels

- Broad availability of fiber materials, including glasses, carbons, aramids
- Outside-pull creels (have core tube) versus center-pull creels
 → Center-pull creels can easily be daisy-chained (inside end of one creel spliced to outside end of a second creel)

Image source: Teijin Aramid

Fibers and creels

- Direct (single-end) roving versus assembled roving
 - Direct roving: Filaments spun to directly form a roving
 - Assembled roving: Multiple strands assembled to form a heavier roving
- Watch out for catenary effects in assembled roving
 - Small differences in length may exist between strands
 fiber misalignment, unequal load bearing between strands
- Rovings are classified by filament count (e.g, carbon fibers) or linear mass measure (e.g., glass fibers)
 - Denier: Mass in grams for 9,000 m of roving [g]
 - TEX: Mass in grams per 1,000 m of roving [g/km]
 - Yield: Length of roving in yards per pound [yd/lb]
- Heavier rovings speed up production but may reduce part quality and performance

Image source: Teijin Aramid

HOSTED BY:

Canada

Fiber delivery/tensioning equipment

- Tension control desirable
 - Control of fiber volume fraction
 - Consistent properties
- Two types depending on use of center-pull or outside-pull creels
 - Outside-pull: Fiber dispenser with computer-controlled motor tensioner
 - Center-pull: Creel shelves with mechanical system e.g. s-wrap tension bars
- Note: Center-pull creels can be converted to outside-pull creels by affixing a core with expanding polymer foam

Resin impregnation

- Resin baths for (liquid) thermosets
- Two types:
 - Dip type: Fiber immersed in tank filled with resin; resin metering by squeegee
 - Drum type: Bottom of drum immersed in resin, fibers run over top of drum to pick up resin; resin metering controlled by doctor blade
 - ➔ Minimizes friction on fibers
- Baths typically heated to lower resin viscosity, promote thorough resin impregnation of filaments
- Notice colored threads in image: Validate winding angles, product identification

Mandrels

- Either removable after curing or become part of fabricated components (e.g., certain pressure vessel types)
- If removal needed:
 - Slightly tapering cylindrical sections eases extraction
 - Avoid resin adhesion using release agents on mandrel surface
- Mandrels must have sufficient stiffness to withstand compression imposed by fiber windings
- Multi-part mandrels can allow for undercuts
- Mandrel cross sections can be non-axisymmetric
 - But, such shapes (e.g. square) may hinder composite consolidation
- Mandrel heating possible to maintain defined temperature during winding
 - Mandrel filled with phase-change material
 - Heat pipe technology (may even allow for curing)

Image source: Acrolab

Curing

- Thermoset composite systems typically heat cured
- Wet filament winding requires mandrel rotation during curing to avoid resin drip-off and promote part roundness
- After curing, mandrel removal may require specialized equipment (mandrel extractor)

Image source: Author

HOSTED BY:

FW PROCESS

Process parameters and control

- Winding angle θ
- Mandrel diameter D
- Pitch P (distance fiber delivery/carriage travels per mandrel rotation)

$$\tan\theta = \frac{\pi D}{P}$$

 $\pi D \cos \theta$

- Fiber band width W
- Number of circuits C

W

HOSTED BY:

FW PROCESS

Process parameters and control

- Interweaving of winding bands typical
- Path planning seeks to avoid gaps in coverage
- Suppliers offer sophisticated design software
- Software tools allow for path planning and parameter optimization
- Design difficult for complex geometries (e.g., bottles, variable diameter shapes)
 → deviations from desired winding angle, overlap of winding bands
- 'Trail and error' approach often necessary

Image source: J. Multhoff

Material systems

• Dry fibers

- Inexpensive reinforcement system
- Has internal liner, outer polymer jacket
- Used to create e.g. steel pipe with augmented hoop strength (FAST-Pipe[™]); spoolable composite pipe (Flexpipe)

• Fiber-reinforced thermosets

- Most common material systems (e.g., glass reinforced epoxy or polyester)
- Wet winding most 'forgiving' due to ease of fiber alignment, liquid resin reducing friction between fibers and guides

Material systems

Thermoset towpreg

- Fiber rovings pre-impregnated with resin
- Resin phase solid at room temperature: 'B-stage resin' (partially pre-cured) or frozen (e.g. polyimides)
- Typically require heating to liquify resin upon deposition on mandrel (hot air blower, infrared heater)
- Heat cure required after winding
- Expensive material systems

Image source: Author

https://compositeskn.org/KPC/A171

Material systems

IOSTED BY

- Thermoplastic tow or tape
 - Tape width and mandrel diameter determine winding angle
 - Nip-point heating and compaction roller used to 'fuse' layers under defined pressure
 - Complete melting undesirable to avoid fiber waviness due to 'catenary' effect in tape
 - Distinct polymer-rich layers

20 _

Liners

- Thermoset matrices are typically brittle

 → micro-cracking along fiber direction upon mechanical loading (pressurization) (Image: Micro-cracking visualized by dye fluorescent in fluid used for pipe pressurization)
- Leakage (functional) failure usually occurs at much lower loads than structural failure (rupture/burst)
- Liners can inhibit functional failure (and provide mandrel that becomes part of the product, e.g., class 2/3/4 pressure vessels)

Liners

- Provide barrier to stop fluid ingress
- Surfacing veils (glass or polymeric) → drapable, easy wet-out with resin
- Polymer liners made via casting, extrusion

(e.g. epoxy composite on polyurethane liner)
→ also used to protect against abrasion

22

Image source: Author

Additional considerations

- Low winding angles ($\theta \rightarrow 0^{\circ}$)
 - Tension causes fiber slippage along mandrel
 - Pin rings facilitate low winding angles
- High winding angles ($\theta \rightarrow 90^{\circ}$)
 - Ideal to consolidate preceding layers, especially in the case of low winding angles

Image source: Author

Additional considerations

- Increasing part rigidity (bending stiffness)
 - Increase wall thickness to raise area moment of inertia
 - Can be achieved by merely adding low-cost aggregate layer, e.g., chopped fibers, sand
- Improving part consolidation (fiber volume fraction, void content)
 - Autoclave curing typically too expensive
 - Wrapping part with peel ply and shrink tape prior to curing

Image source: Author

TESTING AND QUALITY CONTROL

- FW structures hardly suited for typical flat coupon testing, e.g., for screening materials and process parameters
 - Curvature effects

HOSTED BY:

- Hoop properties typically critical
- Difficult to extrapolate result from other fabrication methods (flat laminates)
 - Fiber volume fraction, void content (both usually higher in FW)
- Tubular specimen pressure testing
 - Better reflect material behavior
 - Ability to test for functional and structural performance
- Full-scale testing and qualification required
 - Standards specific to certain product types
 - ASME NM standards for glass/thermoset piping

Image source: Author

25

https://compositeskn.org/KPC/A178

EMERGING TECHNOLOGIES

- Materials systems
 - Towpregs, tapes
 - Thermoplastic composites
 - Multi-material systems
 - High-temperature resins (e.g., polyimides)
- Multifunctional composites / structures
 - Augmenting composite structure with added functionality
 - Filler-modified resins (e.g., electrically conductive fillers like graphene)
 - Static electricity discharge, EMF shielding
- Embedded sensors (e.g., RFID tags)

APPLICATION EXAMPLES

- Pressure vessels, bottles
 Specific strength
- Tubular products, piping
 - Corrosion/degradation resistance, lightweight
- Drive shafts / couplings
 Lightweight, insulating
- Utility poles
 - Degradation resistance, ease of transportation
- Flywheel rotors
 - Specific strength

Image source: DYNEXA, RS Technologies, Author

Thank you for joining us!

Keep an eye out for upcoming AIM events:

Implementing Bolted Joints in Composites Hosted by Dr. Casey Keulen October 30, 2024 <u>https://compositeskn.org/KPC/A373</u>

And don't forget to visit the KPC for more information: https://compositeskn.org/KPC

Today's Webinar will be posted at: https://compositeskn.org/KPC/A370

