INTRODUCTION TO OUT OF AUTOCLAVE PREPREG PROCESSING

CO-HOSTED BY:

compositeskn.org

nasampe.org

YOUR HOSTS

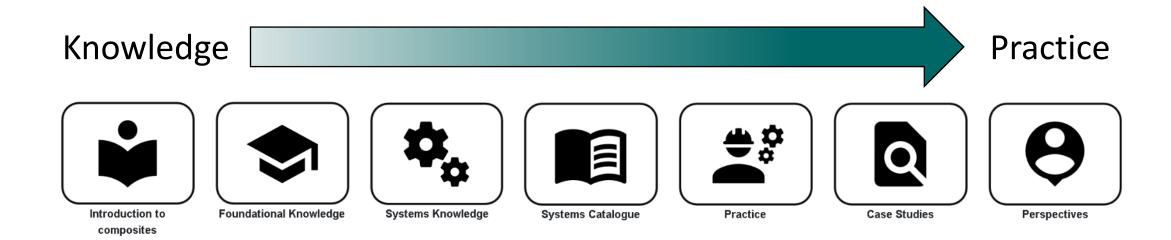
Casey Keulen, Ph.D, P.Eng.

Assistant Professor of Teaching, University of British Columbia Co-Director of Advanced Materials Manufacturing MEL Program, UBC Director of Knowledge in Practice Centre, CKN

- Ph.D. and M.A.Sc. in Composite Materials Engineering
- Nearly 20 years experience in industry and academia working on polymer matrix composites in aerospace, automotive, marine, energy, recreation and others
- Experience working with over 150 companies from SME to major international corporations
- Expertise in liquid composite moulding and thermal management

PRESENTATION CONTRIBUTORS

- Leah Moore
 - CKN Trainee Engineer
- Arghyanil Bhattacharjee
 - CKN Research Engineer

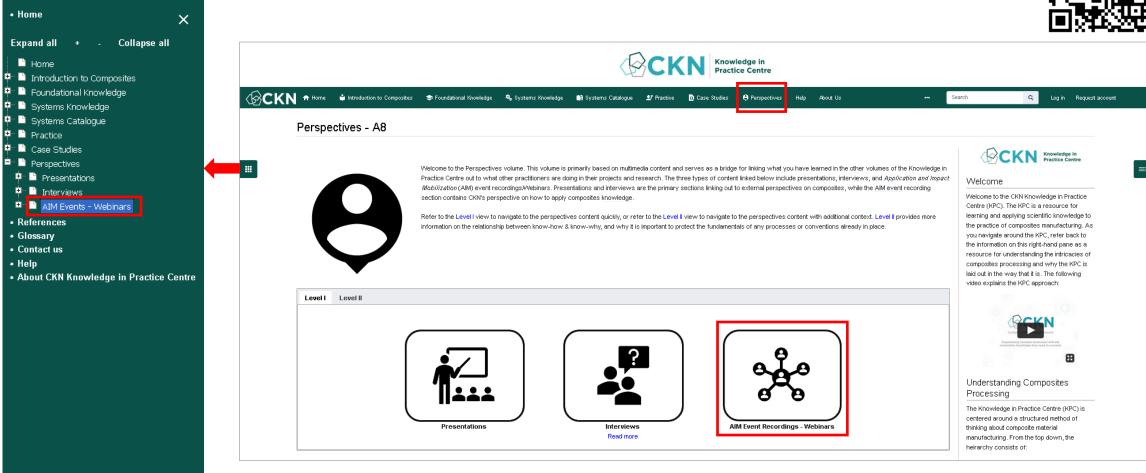


KNOWLEDGE IN PRACTICE CENTRE (KPC)

• A freely available online resource for composite materials engineering:

compositeskn.org/KPC

 Focus on practice, guided by foundational knowledge and a systems-based approach to thinking about composites manufacturing



PAST WEBINAR RECORDINGS AVAILABLE

Today's Webinar will be posted at:

https://compositeskn.org/KPC/A393

TODAY'S TOPIC:

Introduction to Out of Autoclave (OoA) Prepreg Processing

OUTLINE

- What is OoA Prepreg Processing?
- History and Applications
- Opportunities & Limitations
- High Level Comparison & Cost Analysis
- Key Considerations
- Making a Part
- Case Studies Thermal Management & Mechanical Properties
- Defect Formation
- Summary

BACKGROUND KNOWLEDGE

Prepreg page:

https://compositeskn.org/KPC/A171

Webinar on prepreg processing: https://compositeskn.org/KPC/A125

WHAT IS OUT OF AUTOCLAVE PREPREG PROCESSING?

Prepregs are a type of fibre reinforcement pre-impregnated with an activated resin matrix [1]

- OoA definition: processing of prepregs without an autoclave
 - Sometimes referred to as VBO (vacuum bag only)
- Benefits: lower capital/energy costs

OPPORTUNITIES

Lower capital & operational costs

✓ Avoids expensive autoclave, nitrogen systems and ongoing maintenance.

Reduced energy consumption

✓ Uses ambient air and lower temperatures, significantly cutting energy use.

Faster setup & lead times

✓ Ovens are simpler, cheaper, and quicker to procure and comission.

Simpler & safer processing

✓ No need for high-pressure vessels or hazardous nitrogen infrastructure.

Easier facility integration

 Smaller, less complex equipment footprint unlocks more locations.

Broader industry access

✓ Opens composite manufacturing to nonaerospace sectors

LIMITATIONS

Lower Consolidation Pressure

Vacuum bag only consolidation makes it harder to eliminate voids and achieve consistent, high fiber volume fractions.

Higher Risk of Porosity

Without extra compaction, residual air or moisture can raise void contents and degrade performance.

Tighter control required

Prepregs require strict cold-storage and dry handling to prevent resin migration or moisture uptake.

Limited part complexity

Deep draws, thick laminates, and tight contours may be harder to consolidate uniformly under vacuum.

Narrower processing window

➤ OoA resins demand precise control of temperature ramps, soak levels, and vacuum integrity.

Longer dwell times & cure cycles

Typical OoA cycles add low-temp dwell and extended cures, lengthening overall processing time.

HISTORY OF OoA

Drivers: Rising autoclave costs; need for agile, cellular workflows; push for lower carbon footprint and formal OoA standards. [1]

Mid-1990s - 2006

Early Research

2010s

Process Highlights

- AFRL/DARPA funds ACG's LTM series (first VBO prepregs)
- SpaceShipOne & Boeing X45A cured at ~60 °C under vacuum
- Drawbacks: high porosity, ~1 week out-times, modest toughness

- Engineered Vacuum Channels (EVACs) for self-breathing prepregs
- Edge-breathing vacuum holds (hours → half-day pre-cure)
- High-temperature post-cures narrow cycle-time gap vs. autoclave

2007 - 2010

Qualification & Uptake

2010s - today

Advanced Materials & Outlook

- DARPA/Boeing/AFRL drive OoA to autoclave levels (MTM45-1 & Cytec 5320)
- Key demonstrators: Lockheed ACCA fuselage and Boeing/Aurora UAV structures
- Proved large-scale OOA possible, but materials still in qualification

- New OoA materials (BMIs, polyimides) now match autoclave-cured strength
- Automated layup with oven cures is proven on pilot lines for higher-volume production [3]
- OoA cuts life-cycle carbon footprint by 20–30 % compared to autoclave

OOA APPLICATIONS

NASA Composite Cryotank Technologies & Demonstration

Marine Current Turbine

[2]

Advanced demonstration

- Full-scale ground tests in a relevant environment;
- near flight-ready but not yet in service

SeaGen Tidal Turbine

Field-proven commercial prototype

- Full-scale, grid-connected 1.2 MW tidal turbine
- Operated from 2008–2019

We are One Composites Bicycle Components

Commercial product

In mass-market sale

Cirrus SR-22

Production aircraft

In serial production, FAA-certified and in widespread service

COMPARISON OF PROCESSING REQUIREMENTS

Aspect	Autoclave	Oven
Equipment Cost [1]	USD ~\$400 K for a 72"×96" autoclave	USD ~\$100 K for a 105"x135" oven
Operational Requirements	Electricity/gas, pressurizing gas, vessel maintenance, heavy-handling labor	Electricity/gas, vacuum-pump upkeep, bagging consumables, simple handling
Pressure	~7 atm (100 psi/0.7 MPa)	~1 atm (14.7 psi/0.1 MPa)
MRCC-MTM45 [2]	Ramp 1–2 °C/min \rightarrow 120 °C (4 h) \rightarrow ramp \rightarrow 180 °C (2 h); cooldown \leq 3 °C/min \rightarrow 60°C	Ramp 1–2 °C/min \rightarrow 80 °C (0.5 h) \rightarrow ramp \rightarrow 120 °C (4 h) \rightarrow ramp \rightarrow 180 °C (2 h); cooldown \leq 3 °C/min \rightarrow 60°C
Cycle Time	≈ 6 h total (incl. ramps, cooldown & post-cure).	≈ 8 h total (incl. dwell, ramps, cooldown & post-cure).
Void Content	Typically < 0.5 vol %	Typically < 2 vol %
Part Size & Geometry	Complex shapes	Simpler geometries
Materials	Any autoclave-grade resin	Typically only low-exotherm, lower-viscosity systems
Energy Use	Very high (pressure + heating)	Moderate (heating only)
Environment	Inert Gas	Ambient Air
Maintenance & Safety	Vessel certification, seal checks, safety interlocks	Vacuum-pump upkeep, basic electrical safety checks

OOA CURING STAGES

• Three critical stages define successful air evacuation, fibre packing, and final part quality in OoA processing [1]

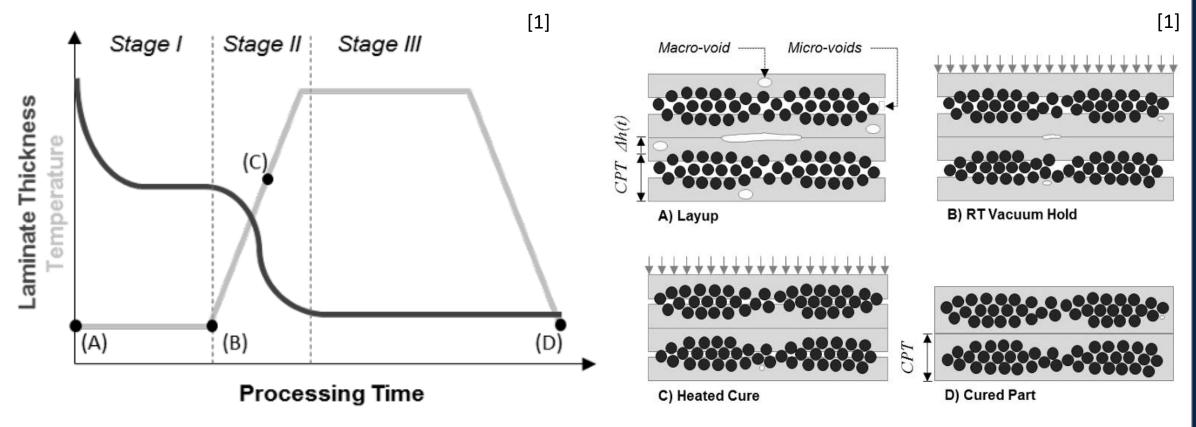
Stage I - Room-Temp

- Vacuum hold: High-viscosity B-stage resin resists flow; vacuum compacts the plies and evacuates large air pockets
- Resin flow: Minimal at this stage due to high viscosity

Stage II – Heating

- Viscosity drops: Resin starts to saturate dry tows and collapse void channels
- Thickness decreases: Laminate consolidates toward cured-ply dimensions
- Last chance for migration: Volatiles can still migrate before entrapment

Stage III - Cure


- Gelation & Vitrification: Resin cross-links, viscosity spikes, air evacuation halts
- **Effect:** Fibre architecture locked in; residual voids fixed quality depends on prior stages

OOA CURING STAGES

 Three critical stages define successful air evacuation, fibre packing, and final part quality in OoA processing [1]

VISCOSITY

• OoA processing relies on vacuum-only pressure (~1 atm), making the resin's viscosity profile vital for effective air evacuation and fibre wet-out. [1]

High Room-Temperature Viscosity


• Prevents cold flow during long vacuum holds – avoiding premature resin migration that would seal evacuation channels and trap volatiles.

Low Cure-Stage Viscosity

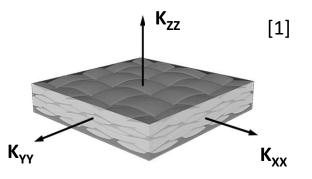
• During the **intermediate dwell** (~120 °C), resin must flow sufficiently to fully impregnate the fiber bed before gelation

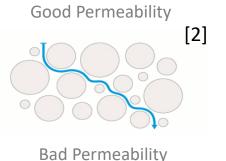
Balanced Flow Window

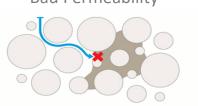
- Resin must be viscous enough early to maintain vent paths
- Fluid enough later to saturate dry zones and minimize voids
- Critical for void-free, high-quality OoA laminates

Time (h)

PERMEABILITY


Ability of air to escape through fibre bed is crucial for void-free OoA cures. [1]


Out of Autoclave:


- Partial impregnation creates planar channels between tows, giving high in-plane permeability (K_{xx}, K_{yy}) for rapid edge evacuation
- Low through-thickness permeability (K_{zz}) demands precise timing:
 - Too much compaction chokes vents, too rapid heating raises viscosity
- In-plane (K_{xx} , K_{yy}) is 3-5 orders of magnitude higher than through-thickness (K_{zz}) [1]
 - Boost K₇₇ by spiking with porcupine rollers or embedded flow paths

Autoclave:

- Fully impregnated resin → inherently low air permeability
- High external pressure assists with compaction and void collapse
- Pressure + heat relax timing constraints and compensate for poor permeability

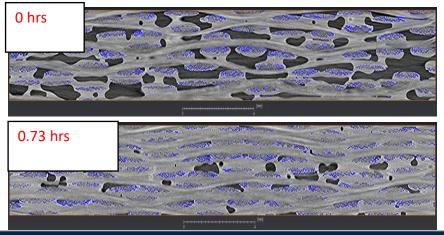
AIR EVACUATION

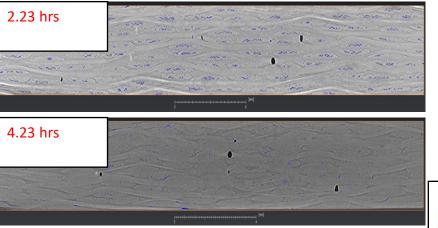
OoA prepregs are intentionally porous to enable air and volatile evacuation via debulk and vacuum hold, a critical step in producing high-quality parts without autoclave pressure. [1]

During Lay-up

"Debulking" consists of drawing vacuum "Vacuum ho

using a temporary vacuum setup

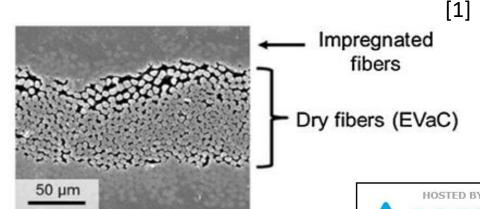

• Short pulls (5–20 min) after every 1–3 plies [1]


- Extracts air through just a few layers and helps new plies conform to the tool
- Skipping debulks can cause wrinkles and trapped bubbles in early layers

During Stage I

"Vacuum holds" consists of drawing vacuum on the final bagged part, at room temperature

- Designed to evacuate as much residual air/volatile as possible prior to heating
- Duration is a function of part size and prepreg permeability.



ENGINEERED VACUUM CHANNELS (EVaCs)

Partially-impregnated plies leave dry tow cores, called EVaCs, that form a built-in permeable network for air removal under vacuum only pressure. [1]

- Stage I: air and volatiles flow along EVaCs to the laminate edge/breather, compacting the stack
- Stage II: as resin viscosity drops, it infiltrates and seals the EVaCs, ideally producing < 1 % void content
- Ensure continuity: Edge-breathing dams & perforated release must stay continuous so every EVaC path reaches the breather cloth without excessive resin bleed
- Autoclave prepreg: autoclave plies are fully impregnated and rely on ~7 atm external pressure, while EVaCs provide the internal pathways that make 1 atm processing possible

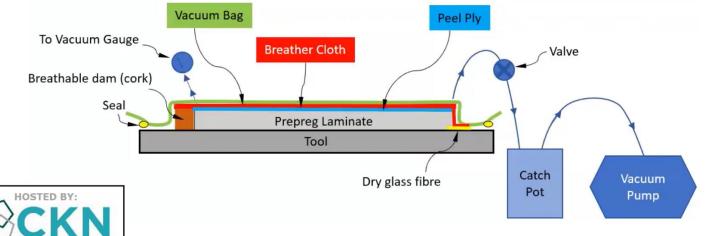
LAYUP PROCESS

Successful VBO processing requires a few specific arrangements: [1]

Edge Breathing Dams

- Continuous dam around the full laminate perimeter
- Dam height ≈ uncured laminate thickness to avoid seal pinching
- Preserves in-plane air paths under 1 atm vacuum

Release Film/Peel Ply


- Perforated film or peel-ply across the bag side
- Allows through-thickness air evacuation while trapping resin bleed
- Match perforation or weave to resin viscosity and part finish

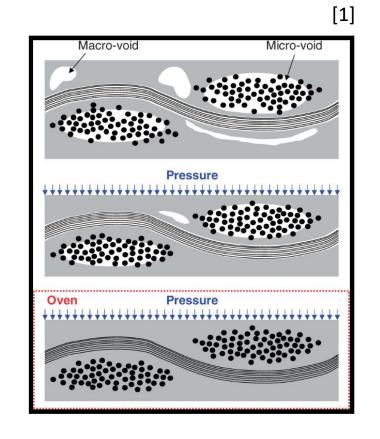
Breather Cloth & Bag

- Lay breather fabric over the release layer for uniform vacuum distribution
- Notch at tight radii to prevent bridging and trapped air
- Smooth bag, seal edges, and remove wrinkles

Final Vacuum Check

- Pull down to target vacuum and isolate pump
- Monitor pressure rise as proof of bag integrity

CONSOLIDATION


Without autoclave pressure, air evacuation or fibre bed compaction, consolidation must be achieved entirely through material design and vacuum-driven flow.

Autoclave prepreg processing: [1]

- External pressure (~7 atm) actively compresses the laminate
- Resin pressure forces void collapse and full fibre impregnation
- Compaction is robust, even with poor nesting/permeability
- Produces uniform thickness, high fibre volume, and minimal voids

Out-of-Autoclave (OoA) processing: [1]

- Vacuum-only (~1 atm) provides limited compaction force
- Consolidation depends on resin flow and early air evacuation
- Critical timing: air must escape before resin gels and seals vent paths
- Trapped air → voids, dry spots, fibre bridging, and thickness variation
- Final part may fall short of structural or cosmetic requirements

BULK FACTOR

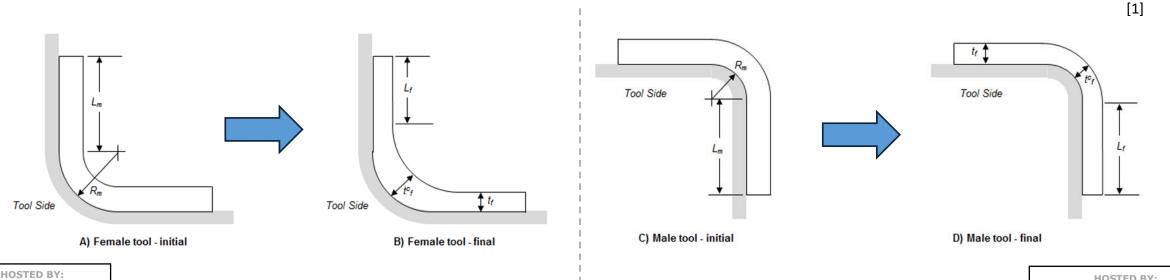
• Bulk factor, β is the ratio of the initial thickness, t_i to the final thickness, t_f :

$$\beta = \frac{t_i}{t_f}$$

- A partially impregnated fibre bed and EVaCs result in higher bulk factor
- This change in thickness is attributed to the compaction of voids and to the fibre tow impregnation by the resin^[1]
- A higher bulk factor can make laminate consolidation more difficult with complex geometries

Top: prior to debulk (t_i)

Bottom: after 3 atm debulk (${}^{\sim} t_f$)



BULK FACTOR

In corner regions, curvature changes how the material compacts compared to flat areas:

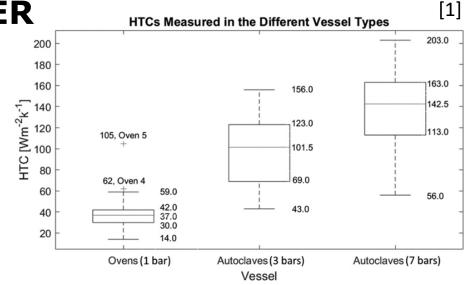
- Interply friction can stop plies from fully conforming to the mould, limiting local compaction and leaving thicker sections
- Reaction stresses vary between corners and flats, causing uneven compaction and thickness variation

WHAT MAKES AN OOA PREPREG AN OOA PREPREG

Partially-impregnated, "breathable" prepregs + tuned resin rheology + compatible fibre architecture = the material trio that lets vacuum-only OoA curing match autoclave quality.^[1]

Aspect	What is desireable?	Why it's critical in vacuum bag only cure?
Prepreg Partial impregnation	Built-in dry tow cores or stitched channels for self-venting (EVaCs)	Enables extraction of air & volatiles before resin flows
Resin Dual-window viscosity	 High at room-temp → no cold-flow * Low at 80-120 °C → tow wet-out Post-cure @ 180 °C 	Balances evacuation first, impregnation second; mismatch = sealed vents or dry tows → voids
Fibre bed Permeable & low-moisture	UD or low-crimp fabrics, pre-dried	Maintains high in-plane K (~10 ⁻¹⁴ m²) during Stage I; moisture or tight weaves choke flow and spawn gas-voids

^{*} the premature migration of uncured resin under gravity at room temperature, which can create dry or resin-poor areas before the cure cycle begins.

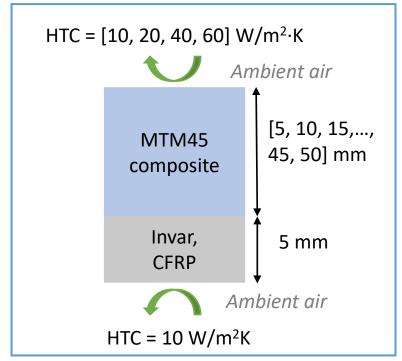

Key take-away:

Materials systems are designed to accommodate: **Stage I** (vacuum hold) air evacuation, **Stage II** (heat-up) complete impregnation, and **Stage III** (final cure) autoclave-level quality achieved – without autoclave pressure.

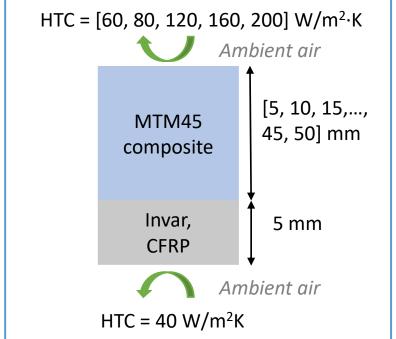
HEAT TRANSFER

- In composite processing, the heat transfer coefficient
 (HTC) governs how quickly and uniformly heat reaches the
 laminate impacting resin flow, air evacuation, and cure
 quality.^[1]
- Autoclaves have higher HTC, which allows for more control of the cure

	Autoclave (3-7 bar)	Oven (1 bar)
HTC Range	60–200 W/m ² ·K	15–50 W/m ² ·K
Flow Mechanism	Forced convection + pressurized gas	Forced convection only
Spatial Variation	High (turbulent flow, inlet/outlet effects)	Low (flatter, more uniform flow field)
Pressure Effect	HTC increases with pressure (个 convective force)	No pressure boost — atmospheric only
Thermal Response	Fast heat-up, but can be uneven across part surface	Slower ramp, but more consistent across part


THERMAL MANAGEMENT CASE STUDY

Thickness	High HTC (Autoclave)	Low HTC (OoA Oven)
Thin	Minimal lag, low exotherm	Slight lag, mild exotherm
Medium	Short lag, moderate exotherm	Longer lag, stronger exotherm
Thick	Lag managed, but local overshoots possible	Risk of core overheating, long lag


Variables:

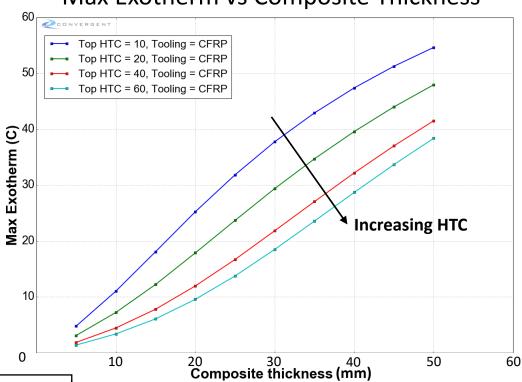
- Part Thickness,
- Top HTC,
- Tooling Material

Oven

Autoclave

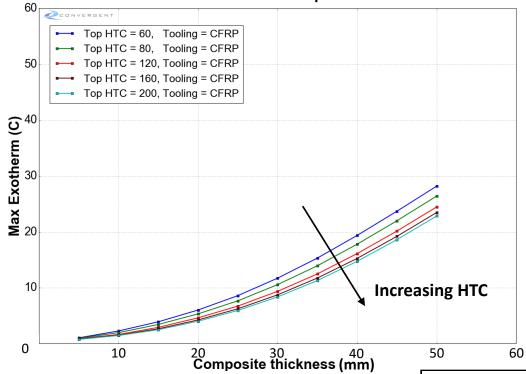
THERMAL MANAGEMENT CASE STUDY

Raven: Parametric Study


Variables: Part Thickness, Top HTC, Tooling Material

Tooling Legend

CFRP


Oven

Max Exotherm vs Composite Thickness

Autoclave

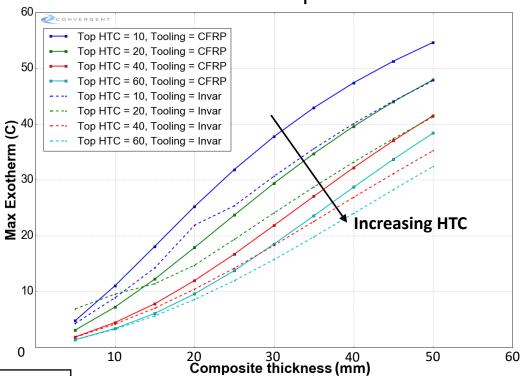
Max Exotherm vs Composite Thickness

HOSTED BY:

THERMAL MANAGEMENT CASE STUDY

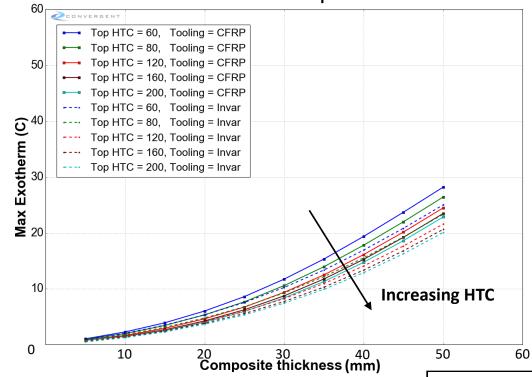
Raven: Parametric Study

Variables: Part Thickness, Top HTC, Tooling Material


Tooling Legend

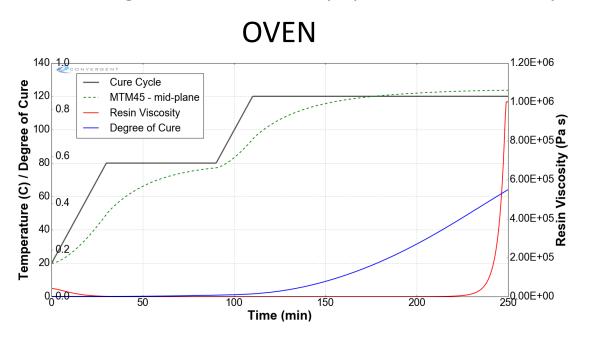
— CFRP

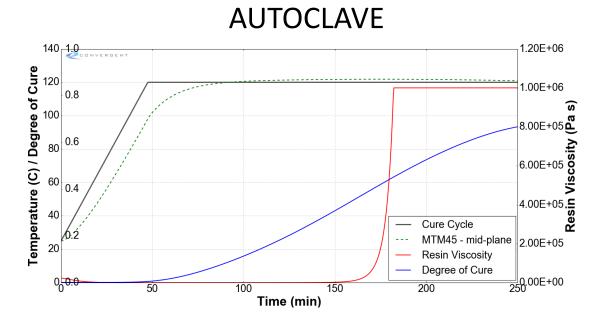
– – – Invar


Oven

Max Exotherm vs Composite Thickness

Autoclave


Max Exotherm vs Composite Thickness



MRCC COMPARISON - MTM45

Using HTCs to define equipment, and cure cycle specified in MTM45 Data Sheet (excl post-cure)

- Initial dwell: Oven holds at ~80 °C before ramp; allow for further air/volatile extraction.
- Viscosity drop: Autoclave viscosity falls into its flow window earlier; Oven's drop is delayed.
- Cure onset: Degree-of-cure curve rises sooner in the Autoclave; Oven remains flat until its main dwell.
- Exotherm effect: Oven mid-plane shows a clear exotherm overshoot; Autoclave's higher HTC
 suppresses internal temperature spikes.

HOSTED BY:

Canada

NASA Study: Comparison of Autoclave and Out-of-Autoclave Composites [1]

Objective: Assess laminate quality and mechanical performance of OoA and autoclave prepregs under both **fresh** and **extended out-life** conditions

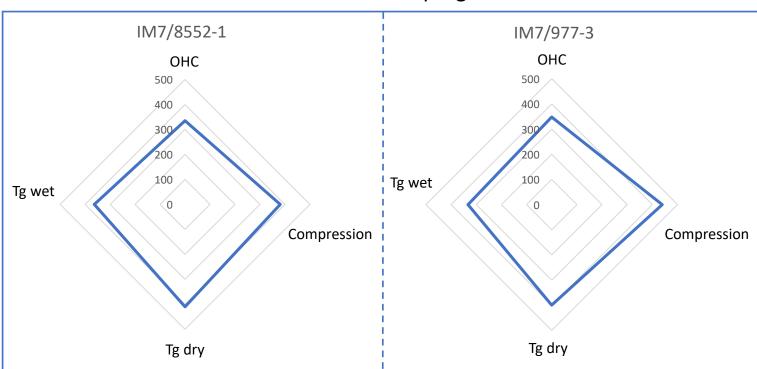
Materials & Setup

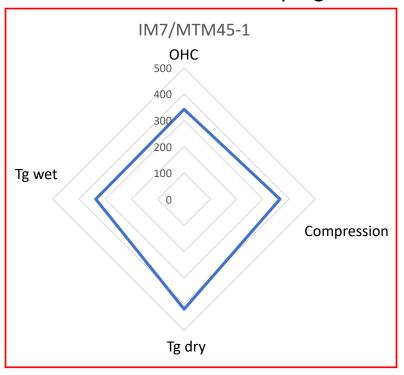
- Autoclave systems: IM7/8552-1 & IM7/977-3
- OoA systems: IM7/MTM45-1 & T40-800b/5320
- All layups used **32-ply quasi-isotropic** to replicate structural laminates
 - OoA panels were cured under vacuum-only conditions
 - Autoclave panels cured under 85 psi
 - Slow ramp ~2 °F/min (~1 °C/min) to 350 °F (180 °C) hold for 2 hours

Fibre property comparison

Property	IM7	Т40-800В
Tensile Modulus (GPa)	~276	~294
Tensile Strength (MPa)	~5600	~5660
Density (g/cm³)	~1.78	~1.80

Note: **Out life** refers to accumulated time out of the freezer before the part is cured



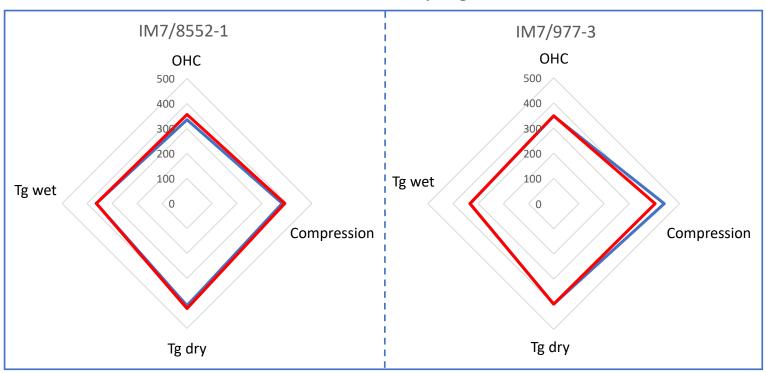

NASA Study: Comparison of Autoclave and Out-of-Autoclave Composites [1]

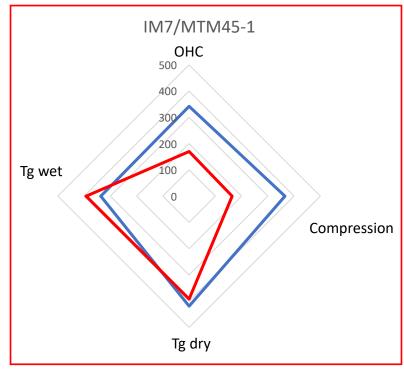
Fresh Prepreg

Autoclave Prepreg

Out-of-Autoclave Prepreg

Note: According to the study, the T40-800B/5320 batch may have experienced off-nominal prepregging, reportedly leading to accelerated tack degradation. As a result, the out-life condition of the panels was inadequate for open-hole compression (OHC) and compression testing.

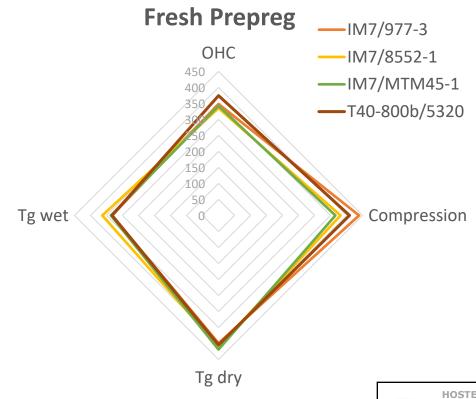

NASA Study: Comparison of Autoclave and Out-of-Autoclave Composites [1]


Fresh Prepreg

Out-life Prepreg

Autoclave Prepreg

Note: According to the study, the T40-800B/5320 batch may have experienced off-nominal prepregging, reportedly leading to accelerated tack degradation. As a result, the out-life condition of the panels was inadequate for open-hole compression (OHC) and compression testing.



NASA Study: Comparison of Autoclave and Out-of-Autoclave Composites [1]

Key Findings

- Fresh OoA prepregs matched autoclave systems in both mechanical and thermal performance
- All systems showed high panel quality when processed within recommended out-life
- Extended out-life severely degraded OoA performance:
 - Tack loss, causing poor ply adhesion
 - Moisture uptake, disrupting resin flow
 - Increased voids, especially in thicker parts
 - Reduced strength across all mechanical tests
- Autoclave systems maintained performance beyond vendor out-life limits
 - Tack, flow, and strength were largely preserved

NASA Study: Comparison of Autoclave and Out-of-Autoclave Composites [1]

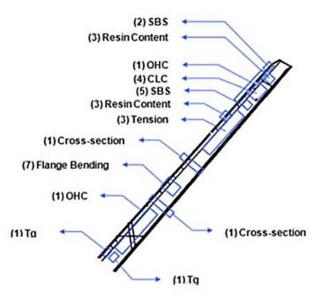
Limitations

- Flat panel results may not reflect behavior in contoured or thick parts
- · OoA sensitivity to thickness, tooling, and vacuum not fully captured
- Scaling up may introduce heat transfer and air evacuation issues
- Long-term durability and impact resistance not evaluated
- Resin-specific effects (e.g., flow, gel time) not isolated

Takeaway

• OoA prepregs can match autoclave performance — but only when processed with strict control of out-time, tack life, and cure conditions.

Boeing Study: Mechanical Comparison of OoA Prepreg Part to Conventional Autoclave Prepreg Part [1]


Objective: Assess whether an **OoA prepreg system** can match the **mechanical performance** of an **autoclave prepreg**, using the same full-scale part, layup, and processing conditions.

Materials & Setup

- OoA system: T40-800B/5320
- Autoclave control: IM7/8552
- Layup: 32-ply C-channel longeron (flight-qualified geometry)
- Tooling: Same ply table, hand lay-up on male tool
- Cure cycle:
 - Ramp: 1–5 °F/min \rightarrow Hold: 250 °F for 1 h, then 350 °F for 2 h
 - OoA: full vacuum only, Autoclave: 90 psi

Limitations

- Only one OoA part (12 ft vs full 14 ft length)
- Hand lay-up ⇒ not representative of automated production
- Resin migration observed in flange due to geometry
- Long-term durability and large-part performance not tested

[1]

Boeing Study: Mechanical Comparison of OoA Prepreg Part to Conventional Autoclave Prepreg Part [1]

[1]

Performance Highlights of OOA

- SBS: up to $111\% \rightarrow$ strong interlaminar strength
- **Tension**: up to $104\% \rightarrow$ excellent fiber performance
- CLC & OHC: 92–99% → load-bearing capable
- Tg: 413-425 °F \rightarrow exceeded 5320 spec (310 °F)
- Web resin content: ~32 wt% → nominal
- Flange resin content: ~27 wt% → likely tied to resin migration during cure in complex geometry

Key Observations

- No excessive voids, wrinkling, or resin pooling
- Vacuum-only cure delivered autoclave-level quality
- Same ply table, no tooling changes production
- Minor sensitivity to resin distribution → process control matters

Mechanical Properties	Coupon Set	(Control) IM7/8552 Al Plug 90 psig (%)	IM7/8552 HDF Test Part Comparison against Control (%)	5320 Out-of- Autoclave Test Part Comparison against Control (%)
Open Hole Compression	Flange at Ends	100	98	99
(ksi)	Web	100	85	92
	Flange at Ends	100	100	108
Short Beam Shear (ksi)	Flange	100		109
Short beam Shear (ksi)	Web Location 1	100	95	
	Web Location 2	100	87	111
Combined Loading	Flange	100	90	
Compression (ksi)	Web Location 1	100	99	95
Tonsion (kai)	Flange	100	83	
Tension (ksi)	Web	100	96	104

Physical Properties	Coupon Set	IM7/8552 AI Plug 90 psig Results MELR 09-791	IM7/8552 HDF Test Longeron Results MELR 09-948	5320 Out-of- Autoclave MELR 10-1322
Glass Transition (°F)	Flange	451 / 438	445 / 434 (2.4) /3	418 / 413 (0.9) /3
	Web	449 / 439	450 / 449 (0.5) /3	425 / 421 (1.0) /3
Resin Content (wt %)	Flange	35.0 /34.4	35.5 / 35.2 (0.9) /3	27.2 /26.3 (3.3) /3
	Web	36.0 /35.8	35.3 / 35.1 (1.3) /3	31.5 / 32.3 (5.4) /3

Overall: Boeing confirmed OoA 5320 as a viable structural alternative when process controls are maintained

[1]

SUMMARY

ADVANTAGES	CHALLENGES
Lower Cost: Avoids high capital and operating expenses of autoclaves	No External Pressure: Requires ultra-precise resin rheology for consolidation and material handling
Scalability : Enables production of large or low-volume parts	Lower HTC: Demands longer, tightly controlled thermal cycles
Simplified infrastructure: Uses ovens instead of pressure vessels	Defect Sensitivity : Higher risk of porosity, wrinkling, resin-rich areas
Potential for more widespread use: Lower barriers to entry can allow more use (potential for more vendors capable of OoA)	Evacuation Constraints: Through-thickness venting remans limiting

Key takeaway: OoA prepreg processing is a **viable alternative** to autoclave curing – validated by high-performance industry studies to deliver autoclave-quality parts – **when** its unique permeability, thermal, and consolidation constraints are **carefully managed**.

HOSTED BY:

Canada

Thank you for joining us!

Keep an eye out for upcoming AIM events:

Flammability of Composite Materials Hosted by Dr. Stephanie Feih September 24, 2025

https://compositeskn.org/KPC/A394

And don't forget to visit the KPC for more information:

https://compositeskn.org/KPC

Today's Webinar will be posted at:

https://compositeskn.org/KPC/A393

