INTRODUCTION TO ADHESIVE BONDING - PART I -

CO-HOSTED BY:

Composites Knowledge Network

compositeskn.org

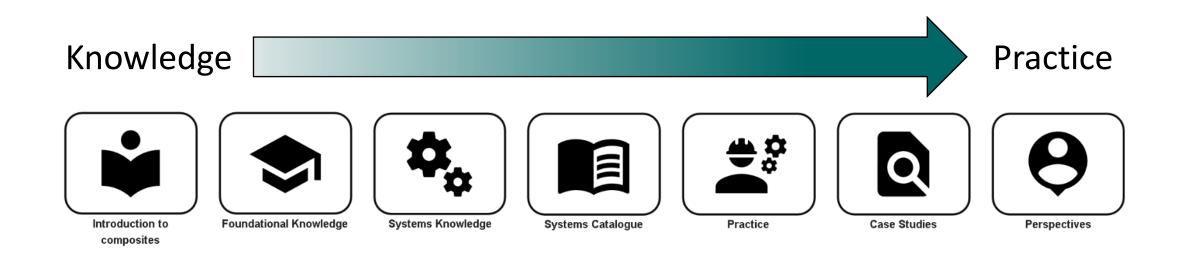
nasampe.org

YOUR HOST

Casey Keulen, Ph.D, P.Eng.

Assistant Professor of Teaching, University of British Columbia Director of Knowledge in Practice Centre, CKN

- Ph.D. and M.A.Sc. in Composite Materials Engineering
- Over 15 years experience in industry and academia working on polymer matrix composites in aerospace, automotive, marine, energy, recreation and others
- Experience working with over 150 companies from SME to major international corporations
- Expertise in liquid composite moulding and thermal management

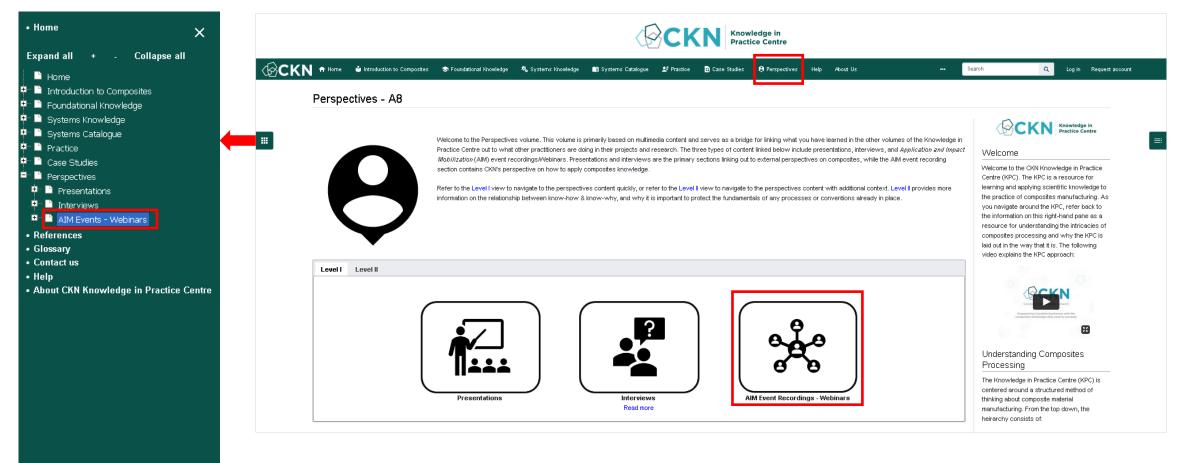


KNOWLEDGE IN PRACTICE CENTRE (KPC)

• A freely available online resource for composite materials engineering:

compositeskn.org/KPC

• Focus on practice, guided by foundational knowledge and a systems-based approach to thinking about composites manufacturing



https://compositeskn.org/KPC

PAST WEBINAR RECORDINGS AVAILABLE

Today's Webinar will be posted at: https://compositeskn.org/KPC/A354

HOSTED BY:

san

Canada

TODAY'S TOPIC:

Introduction to Adhesive Bonding - Part I -

https://compositeskn.org/KPC/A354

OUTLINE

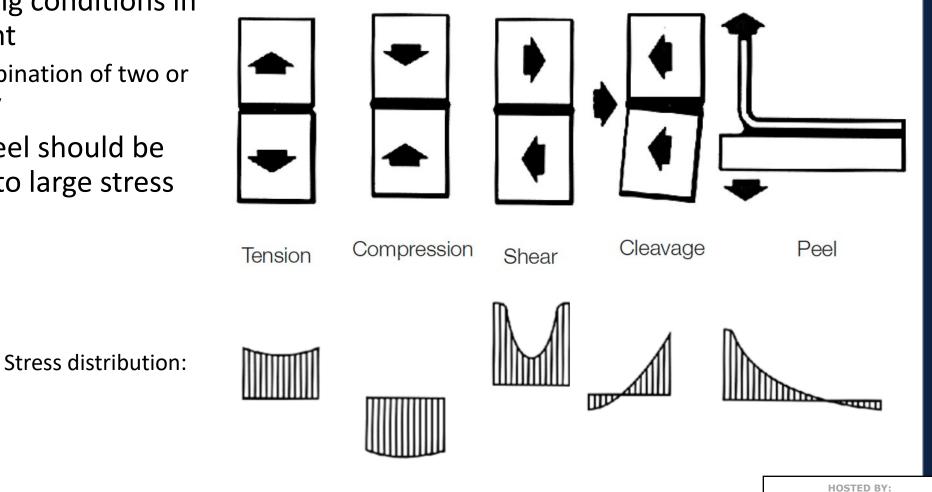
- Advantages/challenges
- Terminology
- Adhesive types (chemistries) and forms
- Surface preparation

• ... Part II will focus on applying this information

ADVANTAGES OF ADHESIVE BONDING

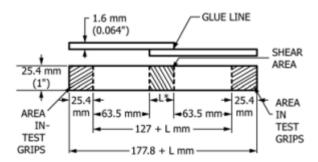
- Continuous bond uniform stress distribution
- Potential for more discrete appearance
- Can join complex assemblies and simplify the assembly process
- Acts as a sealant
- Can conduct or insulate electric charge
- Damp vibration
- Reduced cost and time

CHALLENGES AND LIMITATIONS OF ADHESIVE BONDING


- Temperature sensitivity
- Chemical resistance
- Cure time not always instant bonding
- Ensuring consistency requires process control
- Can be challenging to inspect
- Typically not easily disassembled for service
- Fit-up considerations

TYPES OF LOADING IN ADHESIVE JOINTS

- Five basic loading conditions in an adhesive joint
 - Usually a combination of two or more in reality
- Cleavage and peel should be minimized due to large stress concentrations



sampe

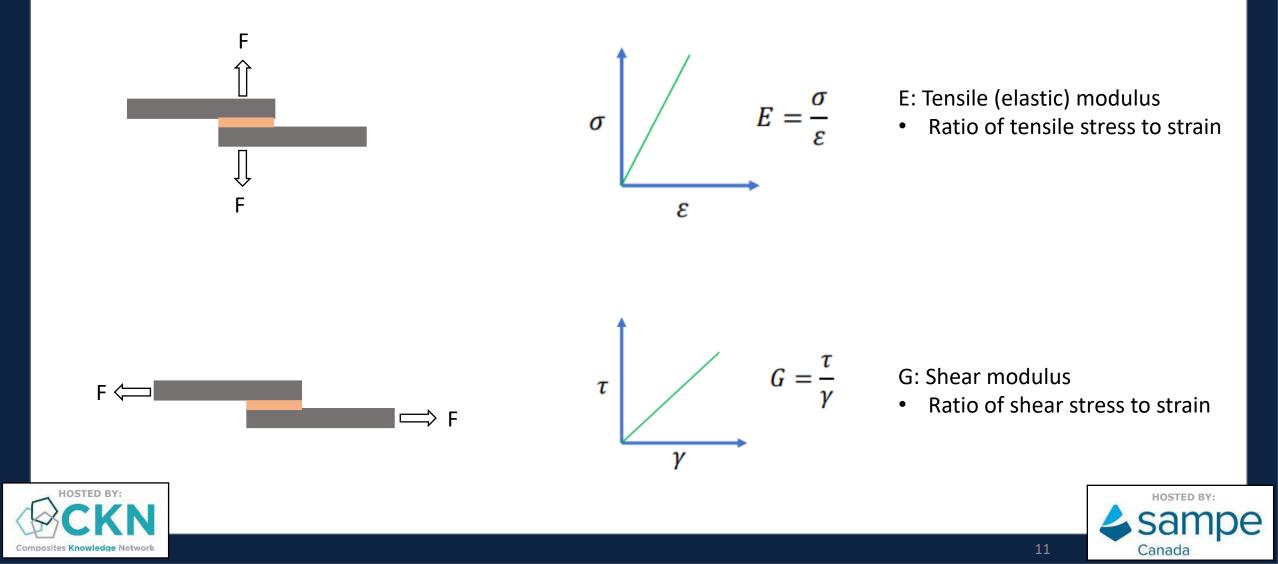
Canada

SINGLE LAP JOINT

- A basic adhesive joint where the substrates overlap each other
 - Often used for mechanical testing of the adhesive
 - ASTM D1002: metal-to-metal
 - ASTM D3163: plastic adherends
 - ASTM D5868: composite adherends

Dimensions of the joint (ASTM D1002)

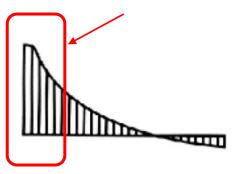
Side view of the single lap joint



Top view of a single lap joint

TENSILE AND SHEAR PROPERTIES

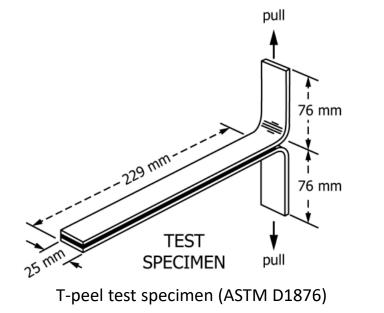
In a single lap adhesive joint:



PEEL STRENGTH

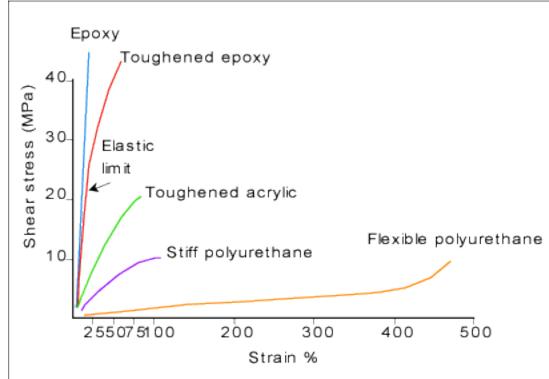
- Defined as: "average load per unit width of bondline required to separate progressively a flexible member from a rigid member or another flexible member" – ASTM D1876
- Generally significantly weaker than shear and tensile strengths due to stress concentration on the edge of adhesive

Stress at edge of adhesive



Stress distribution

12


 $P_{s} = \frac{F_{average}}{b}$ $F_{average} = \text{average peel force [N]}$ b = adhesive width [mm]

TOUGHNESS

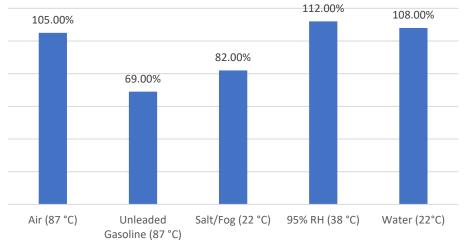
- Energy absorbed by material before fracture
 - Calculated as area under stressstrain curve until fracture
- Toughened adhesives typically contain elastomeric fillers which increases the ductility and impact resistance

Stress-strain curves of various adhesives [1]

COEFFICIENT OF THERMAL EXPANSION (CTE)

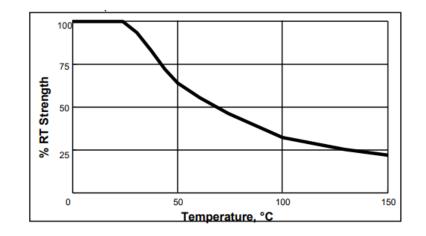
• Differences in CTE of substrates will create a thermal strain when temperature changes

Thermal strain can be calculated by: $\varepsilon_{thermal} = \Delta L/L_0 = \alpha \Delta T$ $\alpha_{Al} = 22 \times 10^{-6} \frac{m}{m^{\circ}C}$ In a CFRP-Aluminum bond, assuming $\Delta T = 65$ $\alpha_{CFRP,quasi-isotropic} \cong 0$ $\varepsilon_{thermal} \cong 0.14\%$ (thermal strain) If $G_{adhesive} \cong 2.76 GPa$, $\tau_{thermal} = 3.86 \text{ MPa}$ (shear stress caused by thermal effects) If $\tau_{adhesive} = 30.3 MPa$ (shear strength of adhesive) Around **12%** of adhesive shear strength is lost due to thermal effects



ENVIRONMENTAL FACTORS

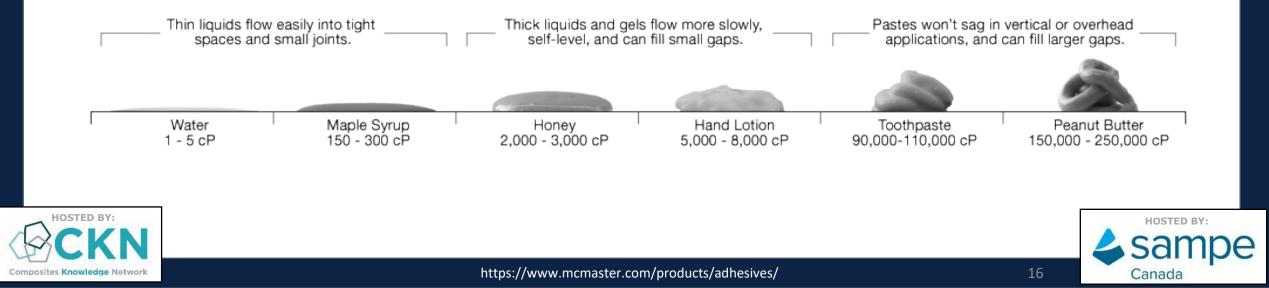
- Depending on the formulation, adhesives can gain/lose strength due to temperature/humidity changes
- Polymers will experience a drop in Tg when exposed to humidity, which effects MOL



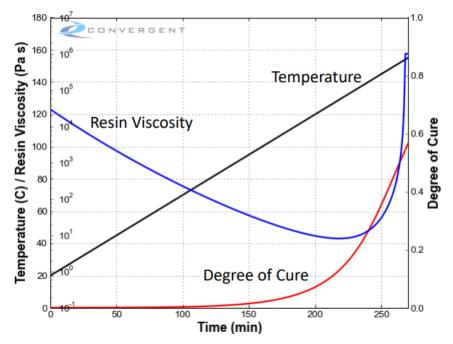
% initial strength after 1000 hr exposure (tested at 22 °C)

The same urethane adhesive gains strength after being <u>exposed</u> to moisture (adopted from Loctite UK U-05FL datasheet)

For more details on effect of environmental factor on mechanical properties, see "Effect of cure on mechanical properties of a composite (Part 2 of 2)" A320



An urethane adhesive loses strength at higher temperatures (Loctite UK U-05FL datasheet)

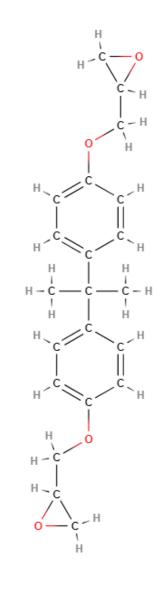

VISCOSITY

- "The resistance to flow expressed as the ratio of the applied shear stress to the resulting rate of shearing strain" ASTM D907
 - Viscosity affects how well the adhesive flows during application and gap filling capability
 - Thixotropy: "shear-thinning" adhesives can prevent sagging during application on vertical surfaces

VISCOSITY

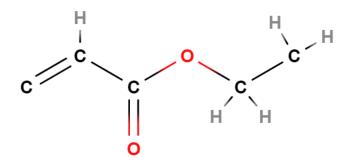
- "The resistance to flow expressed as the ratio of the applied shear stress to the resulting rate of shearing strain" ASTM D907
 - Viscosity affects how well the adhesive flows during application and gap filling capability
 - Thixotropy: "shear-thinning" adhesives can prevent sagging during application on vertical surfaces

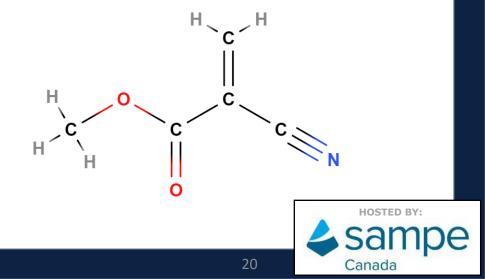
ADHESIVE FORMATS


- Adhesives are available in different formats
- Thick or thin liquid
- Paste
- Gels
 - Can be light- or UV-curable
- Putty
- Film
 - One-part adhesives that are dry to the touch and are faster and easier to apply than two-part adhesives
 - Can be conductive and replace soldering
 - Similar to prepreg but without the fibre

• Epoxy

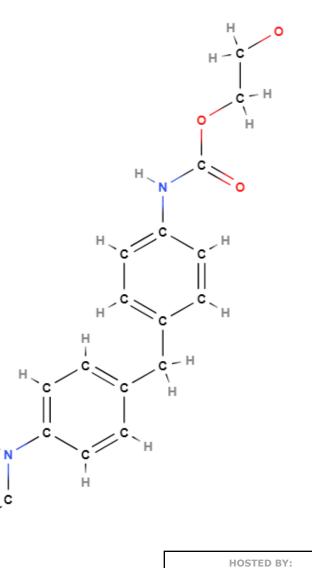
- Two-part or single-part (heat-activated)
- Wide range of formulations
- Toughened epoxy
 - Contains elastomeric fillers for impact resistance
- Suitable for elevated temperatures and environments
- High shear and peel strength
- Suitable for bonding dissimilar materials





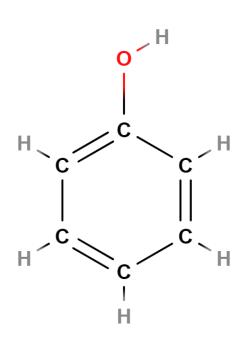
• Acrylic

- Known as anaerobic adhesives and can cure in the absence of air
 - Two-part or UV-cured
- Can be either thermoplastic or thermosetting
- Typically fast-curing at room temperature
- Low viscosity
- Low shrinkage during cure
- Can potentially bond to oily or poorly prepared surfaces, and generally resistant to oils and fluids
- Cyanoacrylate
 - E.g. "super glue"
 - Specific type of acrylic activated by moisture
 - Need close fit
 - Low shear strength, so not good for structural
 - 'Instant bond'



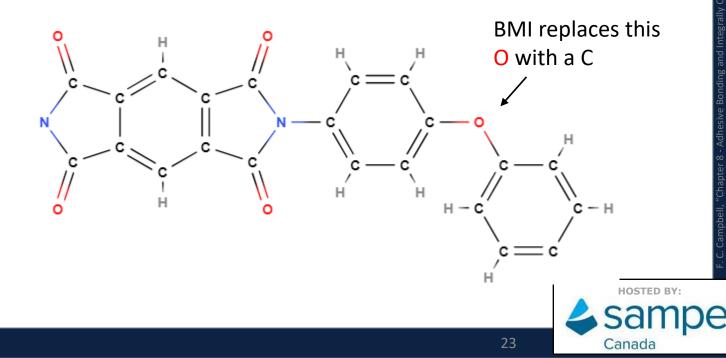
Adhesive Types

• Urethane

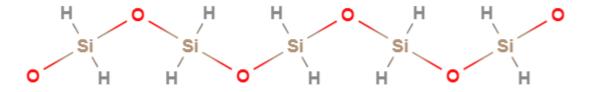

- Two part or moisture-activated
- Expands as it hardens, so it is efficient for cavity filling
- Non-toxic
- Flexible, due to lightly crosslinked thermoset structure
 - High peel strength and impact resistance
- High strength at cryogenic conditions

• Modified Phenolic

- Usually alloyed with another chemical group to combine properties
 - E.g. epoxy-phenolic, vinyl-phenolic, nitrile-phenolic
- Heat and pressure cured
- Available as liquids and film adhesives
- Can be expensive
- Typically used in high performance applications
- Often used for non-metallic honeycomb core production



• Polyimide


- E.g. bismaleimide (BMI)
- Cured at high temperatures
- Resistant to high temperatures, up to 500 °C
- Can be used as thermoplastic and thermoset
- Often used in film adhesives and honeycombs

• Silicones

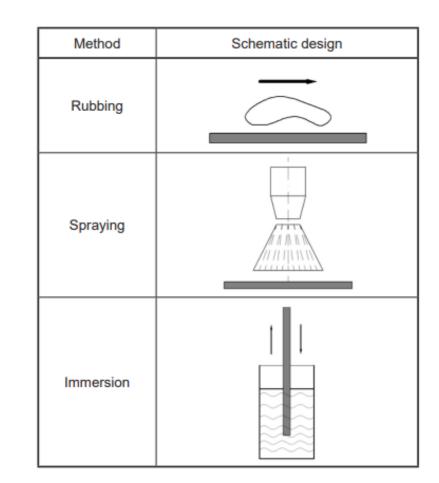
- Often used as sealant (room-temperature vulcanizing or RTV)
- Relatively slow curing
- Thermally and chemically stable
- Flexible bond, allowing for even transmission of weight
- Sometimes used for semi-permanent bonds, as silicone can be separated after curing
- NOTE: Silicone can cause epoxies to not bond by forming a thin layer on the bonding surface, avoid cross contamination.

SURFACE PREPARATION

- Surface preparation can be used to enhance the bond and make it more reliable
- Surface preparation can increase the surface energy of the substrate, which improves the ability of the surface to absorb substances (wettability)
- Several methods can be used to prepare substrate surface for bonding:
 - Degreasing
 - Abrasion
 - Chemical treatment
 - Flame or plasma treatment
- Abrading the surface of substrate removes pre-existing deposits and increases the surface area, which increases mechanical adhesion

1. Clean

Abrade


3. Degrease

25

https://www.mcmaster.com/products/adhesives/

DEGREASING

- Degreasing removes dirt and other contaminants from the surface of substrates
- Solvents such as acetone, methyl ethyl ketone, or isopropyl alcohol are common for degreasing
- Degreaser is applied and allowed to dry a number of times to remove dirt and any residual solvent

Various methods of degreasing

ABRASION

- Mechanical abrasion removes heavy deposits such as oxide layers and other contaminants and increases the surface area for bonding
- Common mechanical abrasion methods include
 - Abrasion with sandpaper
 - Sandblasting
 - Wire brushing

- The surfaces must be cleaned before and after abrasion
- Some abrasion techniques may pose health hazards
- Grit blasting may cause deformation on thin laminates

CHEMICAL TREATMENT

- Chemical treatment techniques change the physical and chemical properties of the surface to improve adhesion
 - Eg: etching
- Recipes are available in the literature for different substrate materials which optimizes the bonding capabilities

FLAME TREATMENT

- Chemical treatment or mechanical abrasion is not effective for some materials, such as nylon
- Techniques such as flame treatment change the surface's reactivity and improves adhesion
- With flame treatment, the surface is exposed to a gas flame for a few seconds which oxidizes the surface and increases the surface energy
- Flame treatment might cause warping of the surface

CORONA AND PLASMA TREATMENT

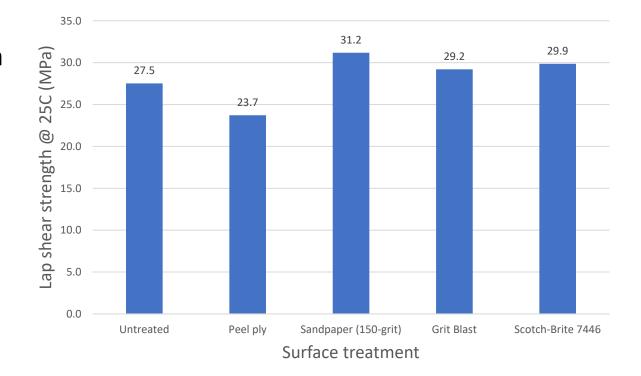
- Corona treatment involves generating discharge by ionizing the air between two closely spaced electrodes
- The discharge interacts with substrate surfaces to form free radicals, which rapidly react with oxygen and increase the substrate surface energy
- Plasma treatment is usually carried out under partial vacuum
- Plasma treatments often provide better stability than the previously discussed methods

SURFACE PREPARATION - CFRP

- Common procedure:
 - Wipe with acetone, sand with medium-grit, wipe with a clean dry cloth, then repeat acetone wipe at room temperature
 - Sources, including ASTM D2093*, Lees (1984)**, Davies (2021)***, generally agree on: degrease before and after one type of sanding (either medium or fine grit)

*"Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive Bonding." Accessed: Nov. 14, 2023. [Online]. Available: https://www.astm.org/d2093-03r17.html

**W. A. Lees, "Surface preparation," in Adhesives in Engineering Design, W. A. Lees, Ed., Berlin, Heidelberg: Springer, 1984, pp. 81–91. doi: 10.1007/978-3-662-11032-4 4.


***P. Davies, "16 - Adhesive bonding of composites," in Adhesive Bonding (Second Edition), R. D. Adams, Ed., in Woodhead Publishing Series in Welding and Other Joining Technologies., Woodhead Publishing, 2021, pp. 499–524. doi: <u>10.1016/B978-0-12-819954-1.00007-1</u>.

SURFACE PREPARATION EXAMPLE WITH CFRP

- Sanding can offer better strength than some peel plies
 - Note: some peel plies are treated with PTFE or silicone which may leave contaminants that compromises the adhesion

Lap shear strength vs surface treatment

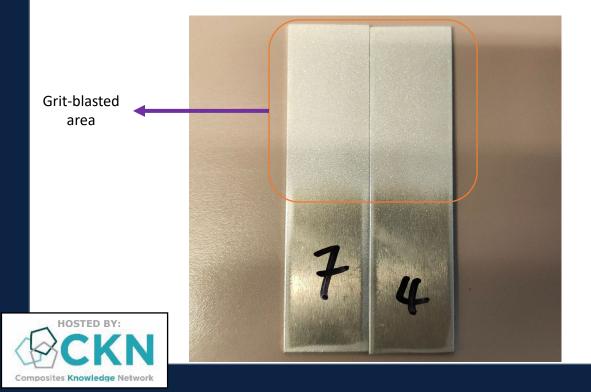
SURFACE PREPARATION - CFRP

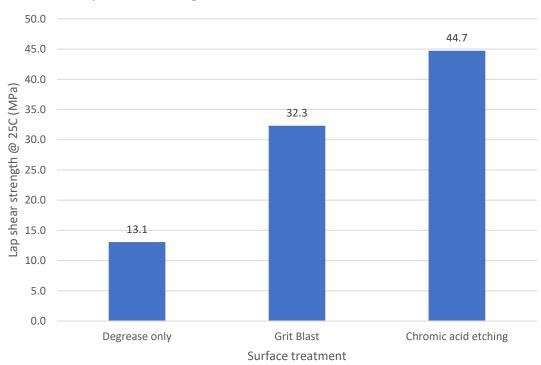
- Internal diameter grit blaster example
- Uses aluminum oxide or glass beads as blast media
- Possible considerations:
 - Typically designed for pipes, so within a rectangular profile, the abrasion might not be uniform
 - Therefore, optimum parameters for grit blasting have to be determined experimentally

"Internal Pipe Blasting Equipment - Mod-u-blast." Accessed: Nov. 09, 2023. [Online]. Available: <u>https://www.modublast.com/newpage1</u>

SURFACE PREPARATION - NYLON

- Common procedure:
 - Wipe with acetone, sand with medium-grit, wipe with a clean dry cloth, then repeat acetone wipe at room temperature
 - Sources, including ASTM D2093, Wegman and van Twisk (2013)^[1], and others agree on degreasing before and after some kind of sanding (either medium or fine grit)
 - Consider mechanical locking features
 - Corona/plasma treatment improves the adhesion of thermoplastics (e.g. Nylon) significantly^[2]


[1] R. F. Wegman and J. Van Twisk, "8 - Plastics," in Surface Preparation Techniques for Adhesive Bonding (Second Edition), R. F. Wegman and J. Van Twisk, Eds., William Andrew Publishing, 2013



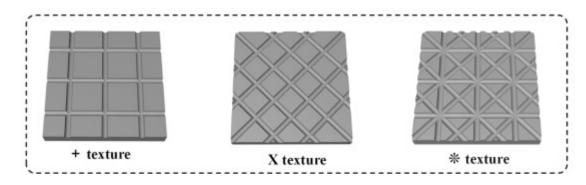
SURFACE PREPARATION EXAMPLE WITH ALUMINUM

• Grit blasting is a viable method

- Results in weaker bond than chemical etching
- However, significantly better than only degreasing
- Silane primer can be used shortly after the surface preparation to protect from contaminations and promote adhesion*

Lap shear strength of Al-5251 vs surface treatments^[1]

SURFACE PREPARATION – ALUMINUM AND CFRP

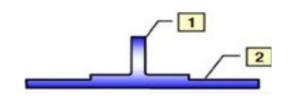

- Generally not recommended to bond Al directly to CFRP due to significant difference in CTE and possibility of galvanic corrosion
- Non-conductive adhesive and uniform bond line thickness creates a barrier which prevents galvanic corrosion
- More compliant adhesive (such as urethane) can reduce thermal stresses caused by difference in CTEs between adherends
- A ply of glass fibre is commonly used between Al and CFRP

MECHANICAL LOCKING

 Varying the geometry of the grooves can lead to differing lap shear strengths

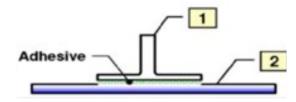
Examples of laser etched surfaces [1]

Vertical groove



Horizontal groove

TYPES OF PROCESSING OF BONDED JOINTS

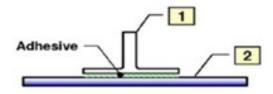


Co-Curing

Components cured together

• Both components uncured

May include additional adhesive and/or continuous structural plies common to both components



Secondary Bonding (Structural Bonding)

Components bonded together with separate bonding operation

- Component 1 cured*
- Component 2 cured*
- * Or metal

NOTE: Different companies in different industries may have different interpretation of these terms

<u>Co-Bonding</u> (Structural Bonding)

Components bonded together during cure of one of the components

- Component 1 cured*
- Component 2 uncured

OR

- Component 1 uncured
- Component 2 cured*
- *Or Metal

May not include additional adhesive

38

Adapted from: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-AVT-266/MP-AVT-266-06.pd

Thank you for joining us!

Keep an eye out for upcoming AIM events:

Introduction to Adhesive Bonding – Part II Hosted by Dr. Casey Keulen February 28, 2024 https://compositeskn.org/KPC/A355

And don't forget to visit the KPC for more information: https://compositeskn.org/KPC

Today's Webinar will be posted at: https://compositeskn.org/KPC/A354

