THE CURRENT STATE OF COMPOSITE MATERIALS IN THE BICYCLE INDUSTRY

CO-HOSTED BY:

compositeskn.org

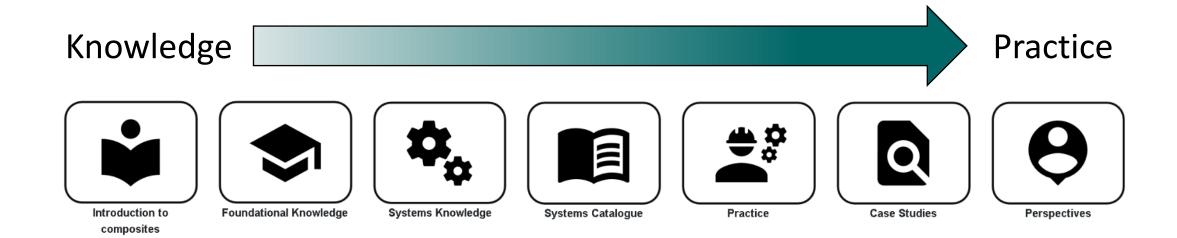
nasampe.org

YOUR HOST

Richard Matthews, M.A.Sc, P.Eng.

Director, MacFarlane Matthews Innovations Inc. Senior Engineer at Bridge Bike Works

- B.A.Sc. in Civil Engineering
- M.A.Sc. in Aerospace Engineering
- Over 32 years experience in industry and academia working on composite materials, product design and FEA in aerospace, automotive, consumer products and sports industries
- 16+ years experience in the bicycle industry, leading design, development, R&D and manufacturing of high-end composite bicycles
- Experienced with composite manufacturing in Asia, North America and Europe

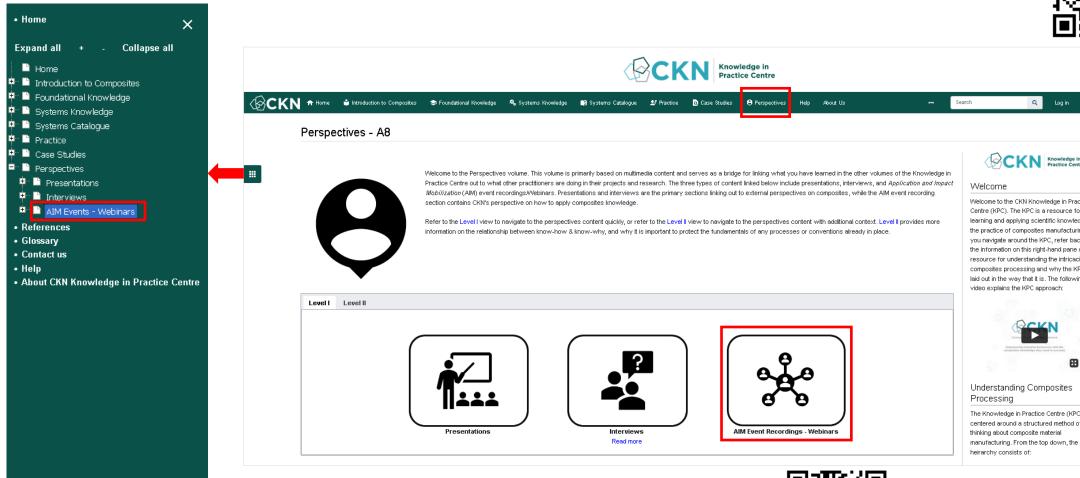


KNOWLEDGE IN PRACTICE CENTRE (KPC)

• A freely available online resource for composite materials engineering:

compositeskn.org/KPC

 Focus on practice, guided by foundational knowledge and a systems-based approach to thinking about composites manufacturing



PAST WEBINAR RECORDINGS AVAILABLE

CKN Knowledge in Practice Centre Welcome to the CKN Knowledge in Practice Centre (KPC). The KPC is a resource for learning and applying scientific knowledge to the information on this right-hand pane as a laid out in the way that it is. The following The Knowledge in Practice Centre (KPC) is centered around a structured method of

Today's Webinar will be posted at:

https://compositeskn.org/KPC/A377

TODAY'S TOPIC:

The Current State of Composite Materials In the Bicycle Industry

OUTLINE

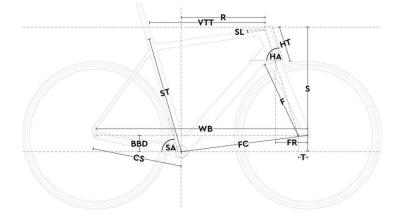
- Review of typical carbon composite bicycle manufacturing
- New processes currently in use
- Future potential

Image © Bridge Bike Works

COMPOSITE BICYCLE DESIGN

- Why?
 - Take advantage of the high specific strength and stiffness properties of composites
 - Weight is a critical factor with human powered vehicles
- Typically used mostly at the highperformance / high-cost end of the spectrum
- General Categories
 - Road bikes
 - Mountain bikes

Image © Bridge Bike Works



BICYCLE FRAME KEY DESIGN PARAMETERS

Road Bikes

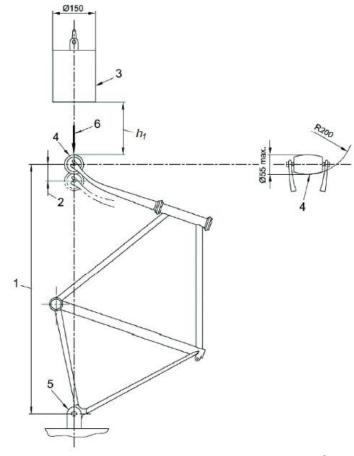
- Rigid frames and forks
- Pedaling stiffness (BB stiffness) and Steering stiffness (HT stiffness) are critical performance parameters
- Must meet minimum strength requirements (ISO 4210)
- Weight is important and critical for race bikes
- Aerodynamics important esp. for time trial races
- Frame dimensions (geometry) are primary design parameters
- Must fit industry standard components
- Fork strength is a critical design parameter
- Frame design still driven by UCI rules, even for non-race bikes

	Size 51	Size 53	Size 55	Size 57	Size 59
S-Stack	510	539	568	596	625
R-Reach	376	383	391	398	405

Image © Bridge Bike Works

BICYCLE FRAME KEY DESIGN PARAMETERS

- Mountain Bikes
 - Main styles:
 - Hardtail HT (similar to road bikes)
 - Full Suspension FS
 - Strength and durability are critical performance parameters
 - Pedaling stiffness is also important
 - Must meet minimum strength requirements (ISO 4210)
 - Weight is important for race bikes, but shape is not governed by UCI rules
 - Suspension geometry is primary design parameter for FS
 - Stiffness and flexibility (comfort) are important for HT
 - Must fit industry standard components
 - Forks and suspension components typically purchased


Image © We Are One Composites

ISO 4210 KEY REQUIREMENTS

- Primary bicycle safety requirements
- Key tests:
 - Head Tube Impact (falling mass)
 - Pedaling fatigue
 - Horizontal (fore-aft) fatigue
 - Vertical (saddle) fatigue
 - Falling frame
 - Disc brake static and fatigue strength
 - Fork rearward impact (falling mass)
 - Fork steerer impact and fatigue (new)

COMPONENT COMPATIBILITY

- Typically bicycle frames and forks are designed to work with a selection of industry standard components including:
 - Wheels and tires (sizes critical)
 - Seatposts and saddles
 - Handlebars and stems
 - Derailleurs, shifters, brakes
 - Pedals, cranksets (pedal arms)
 - Bottom brackets (crankset bearings)
 - Press fit
 - Threaded

BICYCLE INDUSTRY SUPPLY CHAIN

- 99% of carbon composite bicycle frames are made in Asia
 - Taiwan, China
 - Moving to lower labor cost countries like Vietnam, Indonesia, Bangladesh
- Most components made in Taiwan, China, Malaysia
 - Co-location of frame and component manufacturing has benefits
- Largest markets are US and EU
 - For high end carbon frames
- Asian market growing quickly

TYPICAL MATERIALS AND PROCESSES USED

- Pre-preg (A171)
- Various fibers (A121)
 - Mostly standard carbon and glass
 - Mostly epoxy resin
- Bladder molding
- Various methods for internal pressure application (A182)
 - Air bags
 - Latex bladders
 - Latex over EPS
 - Plastic / wood mandrels
- Female tools in heated presses, air pressure

TYPICAL FRAME DESIGN

- Hollow tubular structures made in various ways:
 - Semi-monocoque
 - Bonded multi-part
 - Full Monocoque
- Epoxy adhesive used for bonding
- Overwrapping of more pre-preg at joints for cosmetic reasons
- Metal Inserts for critical interfaces

TYPICAL FRAME MANUFACTURING

- Automated pre-preg cutting and manual kitting
- Hand layup
 - Complex shapes and complicated laminate schedules with very small radius of curvature
 - Plies wrap fully around tubes and in complex ways at transitions
- Manual molding
- Manual clean up and bonding
- Manual finishing and painting

TOOLING

- Main part tools are usually steel
 - P20 for high volume production
 - Aluminum can be used for lower volume and prototypes
- Inserts are used for molding undercuts and complex shapes
- Fittings for air bag or bladder connection are important

Image © Cervelo

NEWER MATERIALS AND PROCESSES IN USE

- RTM (A126)
- Thermoplastic materials (A161)
- Automated kit cutting and kitting
- Robotic placement
- Robotic sanding / painting
- Natural fibers

AREAS OF CONCERN

- Sustainability
 - High CO2 emissions to create fibers and resins
 - Toxic chemicals and VOC's used in resins
- End of Life
 - Thermoset resins typically not recyclable, must be burned or landfill
 - Difficult to separate fibers from resin
 - Fibers often shortened in separation, leading to downgrade of performance for recovered materials

POTENTIAL FUTURE TECHNIQUES

- Automotive style processes and cycle times
- Automation to reduce labor costs
- Al for design / layup optimization
- Design changes to better suit automated manufacturing
- Recycling / re-use of end-of-life products

Image © Airborne

Thank you for joining us!

Keep an eye out for upcoming AIM events:

"An Introduction to Quality Assurance and Quality Control in Composites Manufacturing"

Hosted by Dr. Casey Keulen February 26, 2024

https://compositeskn.org/KPC/A378

And don't forget to visit the KPC for more information:

https://compositeskn.org/KPC

Today's Webinar will be posted at:

https://compositeskn.org/KPC/A377

