UNDERSTANDING POLYESTER RESIN PROCESSING:

THE EFFECT OF AMBIENT TEMPERATURE ON THE FINAL PART

CO-HOSTED BY:

Composites Knowledge Network

compositeskn.org

nasampe.org

YOUR HOST

Casey Keulen, Ph.D, P.Eng.

Assistant Professor of Teaching, University of British Columbia Co-Director of Advanced Materials Manufacturing MEL Program, UBC Co-Director of Knowledge in Practice Centre, CKN

- Ph.D. and M.A.Sc. in Composite Materials Engineering
- Over 15 years experience in industry and academia working on polymer matrix composites in aerospace, automotive, marine, energy, recreation and others
- Experience working with over 150 companies from SME to major international corporations
- Expertise in liquid composite moulding and thermal management

PAST WEBINAR RECORDINGS AVAILABLE

KNOWLEDGE IN PRACTICE CENTRE (KPC)

• A freely available online resource for composite materials engineering:

compositeskn.org/KPC

• Focus on practice, guided by foundational knowledge and a systems-based approach to thinking about composites manufacturing

Janada

PAST WEBINAR RECORDINGS AVAILABLE

TODAY'S TOPIC:

Understanding Polyester Resin Processing: The effect of ambient temperature on the final part

HOSTED BY:

To learn more about thermosetting resins watch: <u>https://compositeskn.org/KPC/A122</u> Webinar Session 3

OUTLINE AND LEARNING OBJECTIVES

Outline

- Introduction to polyester resin
- Curing polyester
 - Degree of cure
 - Heat of reaction
 - Tg
 - Gel time
- Polyester in the context of MSTEP
- Experimental study
- Industrial case study
- Managing the cure

Learning Objectives

- Understand how polyester resins cure
- Understand the parameters that effect cure
- Understand the effect of ambient temperature on the cure of polyester resin

HOSTED BY:

 Understand what can be done to control the cure

- Where does polyester resin fit on the composites landscape?
 - Most commonly used matrix for thermoset composites
 - Advantages
 - Economical
 - Flexible cure process
 - Fast cure time
 - Disadvantages
 - Lower material properties than alternatives (epoxy)
 - Low Tg
 - Health and safety issues
 - Higher cure shrinkage

Polyester resin (One part plus initiator)

8

To learn more about polyester resin watch: <u>https://compositeskn.org/KPC/A122</u> Webinar Session 3 HOSTED BY: Sampe Canada

- Where does polyester resin fit on the composites landscape?
 - Typically used with glass fibre, rarely with carbon fiber
 - Common applications:
 - Boats/marine
 - Turbine blades
 - Electrical equipment
 - Industrial applications
 - Water slides
 - Truck canopies
 - Pipes/plumbing

HOSTED BY:

To learn more about polyester resin watch: <u>https://compositeskn.org/KPC/A122</u> Webinar Session 3

- Common manufacturing processes
 - Hand (wet) layup
 - Spray up
 - Infusion
 - LRTM
 - Pultrusion

Infusion

Wet/hand layup

Spray up

To learn more about processes watch: <u>https://compositeskn.org/KPC/A124</u> Webinar Session 5

- Common manufacturing processes
 - Hand (wet) layup
 - Spray up
 - Infusion
 - LRTM

Infusion

Wet/hand layup

Spray up

11

To learn more about processes watch: <u>https://compositeskn.org/KPC/A124</u> Webinar Session 5

- What is typically common to these processes?
 - Ambient curing (ie. cured by leaving at ambient temperatures rather than using active curing)
 - Minimal/no thermal management
- What does this mean for the manufacturer?
 - Less control over outcomes such as:
 - Degree of cure (DOC)
 - Tg
 - Mechanical properties

12

HOSTED BY:

Canada

<u>https://compositeskn.org/KPC/A103</u> - Polyester Resin <u>https://compositeskn.org/KPC/A162</u> - Curing Thermoset Resins HOSTED BY: Sampe Canada

- Polyester is a thermoset resin
 - Goes through an irreversible *exothermic* chemical reaction 'the cure' or 'curing'
- The cure begins when an initiator is added to the resin
- The rate of cure is a function of temperature
- The higher the temperature, the faster the reaction will generate heat, which increases the temperature further
- The faster the reaction, the less working/gel time

<u>https://compositeskn.org/KPC/A103</u> - Polyester Resin <u>https://compositeskn.org/KPC/A162</u> - Curing Thermoset Resins

- Polyester is a thermoset resin
 - Goes through an irreversible *exothermic* chemical reaction 'the cure' or 'curing'
- The cure begins when an initiator is added to the resin
- The rate of cure is a function of temperature
- The higher the temperature, the faster the reaction will generate heat, which increases the temperature further
- The faster the reaction, the less working/gel time

Important to remember that even though the ambient temperature is ~20°C, the temperature that the material experiences is likely much different

<u>https://compositeskn.org/KPC/A103</u> - Polyester Resin <u>https://compositeskn.org/KPC/A162</u> - Curing Thermoset Resins **HOSTED BY:**

Canada

- What properties and outcomes of the cure are we interested in?
 - Degree of cure, (DOC)
- Heat of reaction is used to measure DOC

- DOC effects the performance of a composite
- Strength typically increases as DOC increases
- Resistance to chemicals and moisture ingress increases as DOC increases
- Glass transition temperature, Tg indicates when a polymer changes from glassy to rubbery
- Tg increases as DOC increases
 - -> Which relates to it's max operating temperature

<u>https://compositeskn.org/KPC/A104</u> - DOC, Tg <u>https://compositeskn.org/KPC/M101</u> – Gel time

• Typical curing control knobs:

<u>https://compositeskn.org/KPC/A103</u> - Polyester Resin <u>https://compositeskn.org/KPC/A162</u> - Curing Thermoset Resins HOSTED BY: Sampe Canada

• Typical curing control knobs:

• Typical curing control knobs:

HOSTED BY:

HOSTED BY:

HOSTED BY:

HOSTED BY:

HOSTED BY:

HOSTED BY:

- We'll use 1D simulation to explore various parameters:
 - Part thickness
 - Airflow (convection)
 - Tooling material
 - Tooling thickness

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

https://compositeskn.org/KPC/A132#1-D Thermal Modelling Example 27

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

HOSTED BY:

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

HOSTED BY:

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

HOSTED BY:

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

• Part thickness

Unless otherwise stated: Aropol polyester resin 1.25% MEKP 6 mm composite tool h =10 W/m²K 20°C ambient air

HOSTED BY:

POLYESTER RESIN CURE SIMULATION Unless otherwise stated: Aropol polyester resin 1.25% MEKP • Part thickness 6 mm composite tool $h = 10 W/m^2 K$ 1.2 200 20°C ambient air CONVERGENT 1.0 150 0.8 Temperature (C) Cure đ 100 0.6 Degree 0.4 50 0.2 ____0.0 300 150 200 250 100 50 Time (min) **HOSTED BY: HOSTED BY:**

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

HOSTED BY:

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

HOSTED BY:

<u>https://compositeskn.org/KPC/A136</u> – Webinar: Process Simulation for cdmHU₈B <u>https://compositeskn.org/KPC/A283</u> – Webinar: State of <u>Art of Process Simulation</u>

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

HOSTED BY:

<u>https://compositeskn.org/KPC/A136</u> – Webinar: Process Simulation for cdmHUB <u>https://compositeskn.org/KPC/A283</u> – Webinar: State of <u>Art of Process Simulation</u>

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

HOSTED BY:

<u>https://compositeskn.org/KPC/A136</u> – Webinar: Process Simulation for cdmHUB <u>https://compositeskn.org/KPC/A283</u> – Webinar: State of <u>Art of Process Simulation</u>

• Airflow (convection)

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm composite tool 20°C ambient air

• Tooling Material

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm tool h =10 W/m²K 20°C ambient air

HOSTED BY:

<u>https://compositeskn.org/KPC/A136</u> – Webinar: Process Simulation for cdmHUB <u>https://compositeskn.org/KPC/A283</u> – Webinar: State of Art of Process Simulation

Canada

• Tooling thickness – Composite Tool

Unless otherwise stated: 6 mm composite part Aropol polyester resin 1.25% MEKP 6 mm tool h =10 W/m²K 20°C ambient air

• We haven't discussed temperature yet...

HOSTED BY:

https://compositeskn.org/KPC/A232 - Thermal Behaviour

HOSTED BY:

Canada

44

sampe

- Material:
 - Polyester material: Aropol CL 70502-25 Resin & Luperox DDM-9 Initiator 1.25 Vol%
- Method:
 - 28.8 g of resin mixed and placed in an aluminum cup (thickness of 12.7 mm), repeated X2
 - One cup placed in an environmental chamber
 - One cup placed in gel timer, that was also in the environmental chamber
 - Thermocouple placed at the centre of the resin to log temperature data
 - Thermocouple used to record ambient temperature
 - Samples held at the following ambient temperatures:
 - 0°C
 - 6°C
 - 10 °C
 - 14 °C
 - 18 °C
 - 22 °C
 - 26 °C

HOSTED BY:

https://compositeskn.org/KPC/M101 – How to Measure Gel Time

HOSTED BY:

Canada

HOSTED BY:

Canada

sampe

HOSTED BY:

HOSTED BY:

Canada

sampe

HOSTED BY:

Canada

sampe

HOSTED BY:

Canada

sampe

HOSTED BY:

Canada

52

sampe

HOSTED BY:

Canada

sampe

CKN

Composites Knowledge Net

HOSTED BY:

HOSTED BY:

be

EXPERIMENTAL STUDY

• Key take always from these results:

npe

Canada

INDUSTRIAL CASE STUDY

- Several companies in the Okanagan (BC) reported issues with inconsistent product quality depending on the season in which they were manufactured
 - More warranty claims from products built in the winter vs. summer
 - ...parts shipped to across the Pacific Ocean in a shipping container... arrived in a different shape...
- Glass fibre-polyester used sourced from same manufacturer in each case
- Parts were cured at *ambient* air temp

MANAGING THE CURE

- What can we do to address this?
- Not practical to use a convection oven for large parts
- In-mould temperature control can be expensive, challenging with composite tooling
- Strategies
 - Forced air (heater)
 - Infrared heater
 - Tent around the part and heat with heater
 - Careful with this, could result in uneven temperature distribution
 - Insulation/blanket
 - Heat is being generated, just a matter of keeping it in
 - Heated blanket

58

MANAGING THE CURE

• Infusion of stairs/deck for 145' luxury yacht

VACUUM INFUSION OF CARBON FIBER SANDWICH STRUCTURE

Thank you for joining us!

Keep an eye out for announcements on the next AIM events And don't forget to visit the KPC for more information:

https://compositeskn.org/KPC

Questions?

For more information on future dates and times visit:

HOSTED BY:

