A WEBINAR ON:

The Composites Knowledge in Practice Centre

An open resource for composites manufacturing knowledge and best practices

compositeskn.org

nasampe.org

YOUR HOSTS

Casey Keulen, Ph.D, P.Eng.

Assistant Professor of Teaching, University of British Columbia Co-Director of Advanced Materials Manufacturing MEL Program, UBC Lead of Continuing Professional Development, CKN

- Ph.D. and M.A.Sc. in Composite Materials Engineering
- Over 15 years experience in industry and academia working on polymer matrix composites in aerospace, automotive, marine, energy, recreation and others
- Experience working with over 150 companies from SME to major international corporations
- Expertise in liquid composite moulding and thermal management

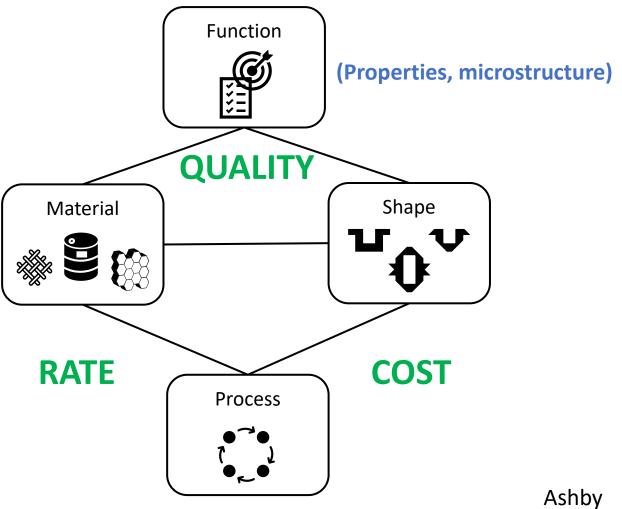
YOUR HOSTS

Dr. Anoush Poursartip, PhD, PEng, FCAE
Professor, The University of British Columbia
Co-Director, Composites Knowledge Network (CKN)
Director, Composites Research Network (CRN)
Director of Research, Convergent Manufacturing Technologies

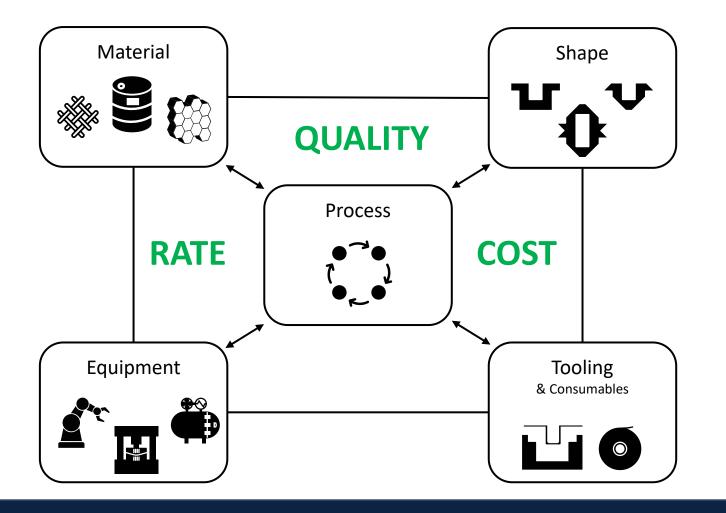
- 40+ years experience in composites
- Research has always had a focus on bridging academia and industry
 & linking knowledge and practice
- Numerous awards and recognitions:
 - Fellow of Canadian Academy of Engineering, SAMPE, ICCM
 - Medal of Excellence in Composites from University of Delaware
 - ASTM Wayne Stinchcomb Award
 - Multiple Boeing awards

PAST WEBINAR RECORDINGS AVAILABLE

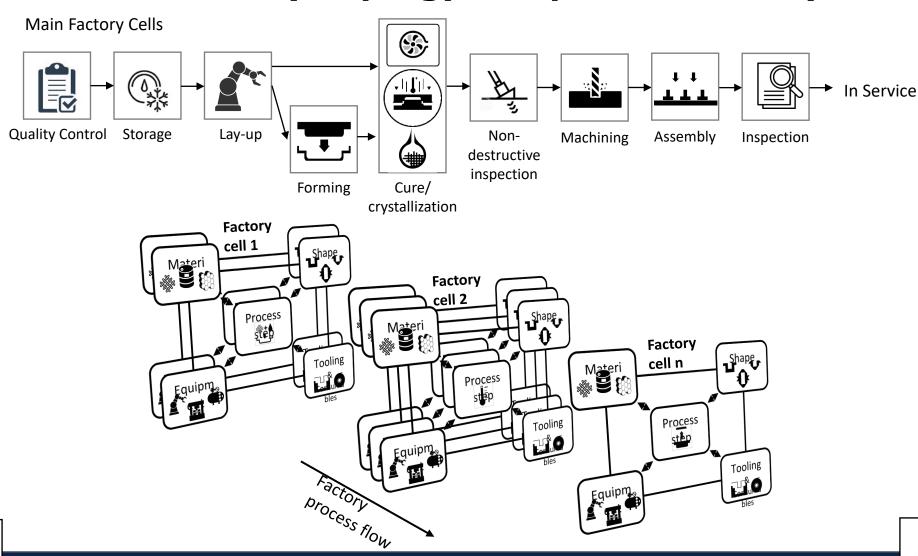
compositeskn.org


Introduction to the KPC

- Polymer composites are excellent materials for a wide range of industries, from aerospace to clean energy to industrial
- The value comes from their versatility in shape, properties, flexibility in manufacturing
- But manufacturing is not easy, and so many of the impediments to further growth in composites use can be traced back to the complexities of composites manufacturing
- The Knowledge in Practice Centre (KPC) has been developed to help you navigate this complexity
- Understanding the KPC approach is key to using it
- Today, we provide a high-level overview of how it all comes together


Design and Manufacturing

Design and Manufacturing

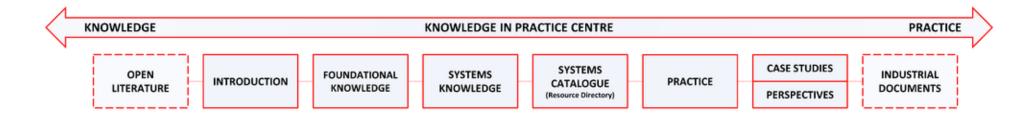


MSTEP

A Generic (Prepreg) Composites Factory

Managing Quality Outcomes in the Factory

- Quality outcomes are managed in the process workflow through the factory via
 - Thermal management
 - Materials deposition management
 - Flow and compaction management
 - Residual stress and deformation management
- Quality is always traded off with cost and rate
- We make these decisions during development of the process, when optimizing the process, and when troubleshooting the process


How to use the KPC

- You may be here with a very specific practice problem
 - I am making thicker parts than previously how do I avoid exotherms?
 How do I find the shortest cycle?
- You may be here with a broader practice question
 - I am buying a new oven. What should I look for?
- You may be here as a learner, for general education
 - How do thermoset resins cure?
- Using the structured approach I have just introduced, we share not just the practical knowledge but also the supporting testing, analysis and experience

KPC Architecture

KPC Demonstration

Summary

- In using the KPC, remember
 - What we are sharing is not perfect
 - We are continuously adding content
 - Whether content or navigation, your feedback on how to make it better is much appreciated
 - We are moving towards enabling you to contribute as well, please tell us
 if you are interested
 - The CKN is a not-for-profit enterprise, with the aim to help the composites community, not just in Canada but internationally
 - We welcome collaboration and involvement
- Explore and hopefully enjoy!

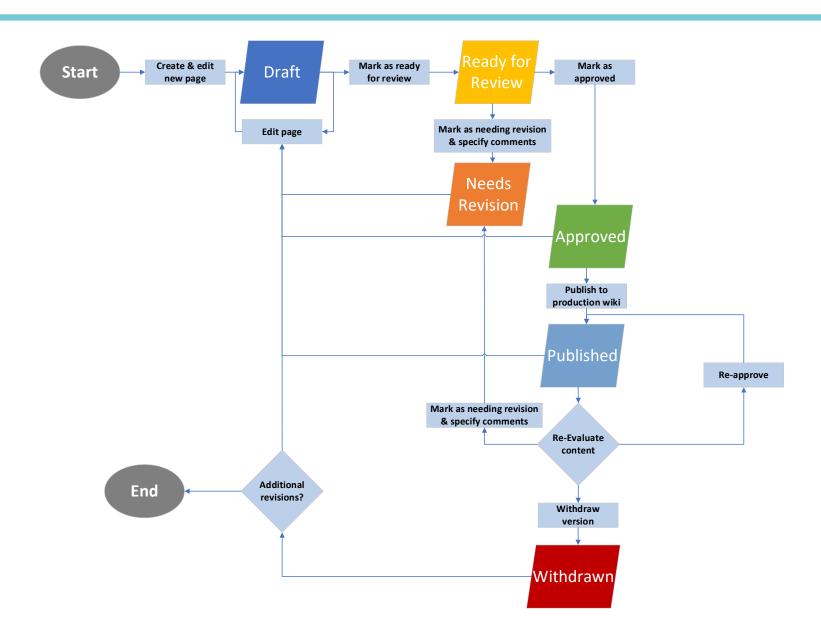
Thank you for joining us! Keep an eye out for announcements on the next AIM events Questions?

For more information on future dates and times visit:

compositeskn.org

The Architecture behind the Knowledge in Practice Centre

Knowledge in Practice Centre (KPC)


- Built on the MediaWiki platform
 - Open source, customizable knowledge transfer platform
 - Same platform used by Wikipedia
- Semantic MediaWiki enabled templates
 - (information \rightarrow data \rightarrow information)
- Publishing workflow integration
 - (edit → review → approve → publish → version control)

Publishing Workflow

Production & Development KPC's

- A "production" and "development" server configuration has been implemented for IT security
- The publicly visible production server only contains versions of pages that we want to be published
- The non-publicly visible development server is used for drafting content
- The "Push" extension is used to transfer approved pages from the Development KPC to the Production KPC

Semantic MediaWiki

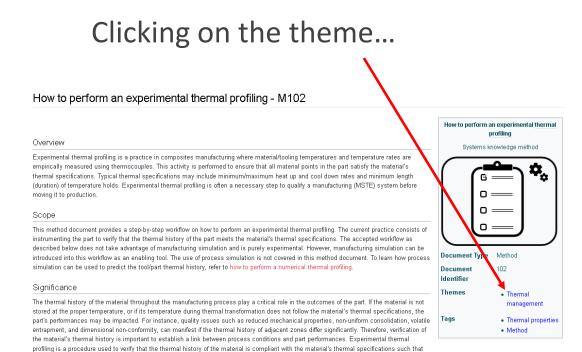
• Information \rightarrow data \rightarrow information

- Writers embed information into the KPC
- This information is stored in a structured way as data inside the relational database
- This data can be queried and turned back into information that is useful to the readers
- E.g.
 - Within the pages for "Hot press", "Oven" and "Autoclave", the objects are specified as "Equipment" belonging to certain factory cells (like "Thermal transformation cell")
 - On the page describing the thermal transformation cell, a query is embedded to list all "Equipment" belonging to the "Thermal transformation cell"
 - This query updates automatically as new equipment is added. The page with the query does not need to be updated, and is always consistent

Equipment used during thermal transformation

- Hot press A176
- Oven A174
- Room temperature transformation A175

Semantic MediaWiki


• E.g. 2

the desired as-manufactured properties can be achieved.

• List all pages related to the "Thermal management" theme

...gives an organized listing of all related pages

	Material structure - A152	
Foundational Knowledge Articles	Materials science - A235	
	Polymer properties - A212	
	Processing science - A151	
	Reinforcement properties - A213	
	Specific heat capacity - A117	
	Thermal behaviour - A232	
	Thermal conductivity - A116	
	Thermal diffusivity - A143	
	Thermal phase transitions of polymers - A102	
	Thermoplastic polymers - A161	
	Thermoset polymers - A105	
Foundational Knowledge Method Documents	How to measure gel time - M101	
Foundational Knowledge Worked Examples	-	
Systems Knowledge Articles	Effect of equipment in a thermal management system - A110	
	Effect of material in a thermal management system - A155	
	Effect of shape in a thermal management system - A154	
	Effect of tooling in a thermal management system - A142	
	System interactions - A109	
	System parameters - A108	
	Systems knowledge method documents - A191	
	Thermal management - A107	
Systems Knowledge Method Documents	How to perform an experimental thermal profiling - M102	