A WEBINAR ON:

RESIN BEHAVIOUR DURING PROCESSING:

Key Resin Properties to Consider When Developing a Manufacturing Process

CO-HOSTED BY:

compositeskn.org

nasampe.org

YOUR HOSTS

Casey Keulen, Ph.D., P.Eng.

Assistant Professor of Teaching, University of British Columbia Co-Director of Advanced Materials Manufacturing MEL Program, UBC Director, Knowledge in Practice Centre, Composites Knowledge Network

- Ph.D. and M.A.Sc. in Composite Materials Engineering
- Over 15 years experience in industry and academia working on polymer matrix composites in aerospace, automotive, marine, energy, recreation and others
- Experience working with over 150 companies from SME to major international corporations
- Expertise in liquid composite moulding and thermal management

YOUR HOSTS

Christophe Mobuchon, Ph.D.

Research Associate/Sessional Lecturer, University of British Columbia Team Lead, Composites Research Network Director, Industry Projects, Composites Knowledge Network

- Ph.D. and M.A.Sc. in Chemical Engineering
- Awarded materials scientist Rio Tinto Alcan award for academic research excellences
- Over 30 publications, conference presentations and patents in the field of polymer matrix composites
- Experience working with over 80 SMEs and international companies to develop new manufacturing processes and products

PAST WEBINAR RECORDINGS AVAILABLE

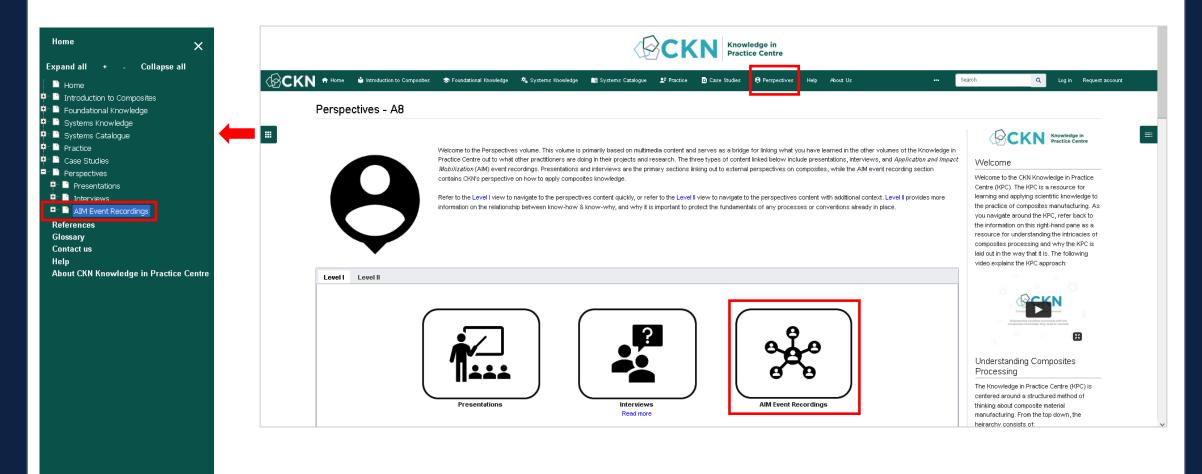
compositeskn.org



KNOWLEDGE IN PRACTICE CENTRE (KPC)

- A freely available online resource for composites engineers: https://compositeskn.org/knowledge-in-practice-centre/
- Focus on practice, guided by foundational knowledge and a systems-based approach to composites manufacturing

Practice


Knowledge

PAST WEBINAR RECORDINGS AVAILABLE

TODAY'S TOPIC:

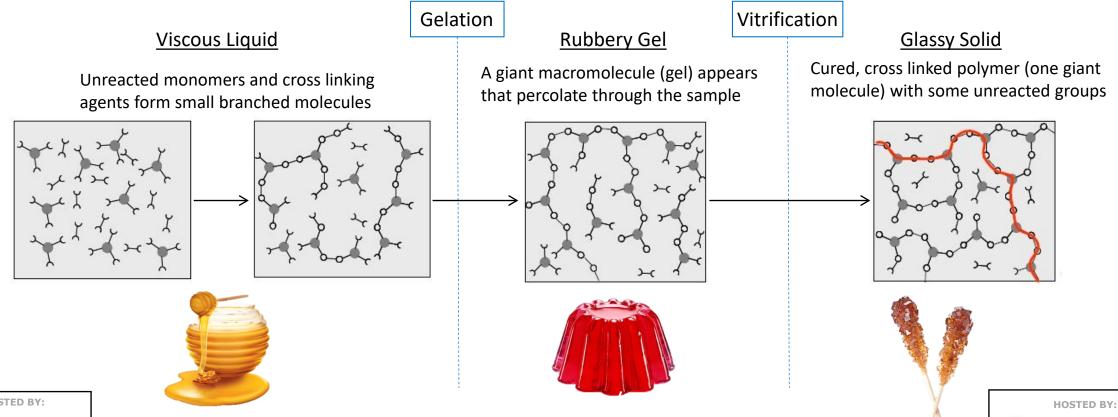
RESIN BEHAVIOUR DURING PROCESSING:

Key Resin Properties to Consider When Developing a Manufacturing Process

INTRODUCTION

- Learning objectives:
 - Understand how the resin transforms during processing
 - Identify and understand the key properties to consider when developing, optimizing or troubleshooting a manufacturing process
 - Understand the information commonly available in technical data sheet
 - Understand instruments used to characterize manufacturing properties

HOW DOES THE RESIN TRANSFORM DURING MANUFACTURING?


The resin liquid-to solid-transition

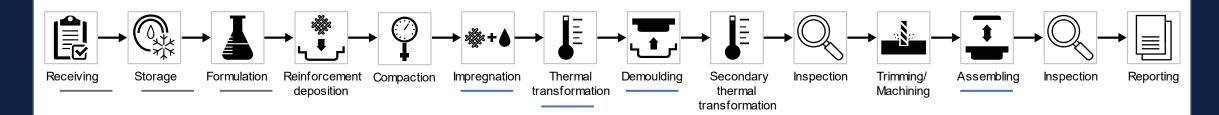
KPC A162: CURE OF THERMOSETTING POLYMERS

- During polymerization the resin goes through different phases
- At gelation it changes from a viscous liquid to a rubbery gel
- As the curing advances, the rubbery gel transforms into a glassy solid at vitrification

Canada

WHAT ARE THE KEY PROPERTIES TO CONSIDER?

Viscosity, gel time, heat of reaction, degree of cure, etc.



KPC A215: MANUFACTURING WORKFLOW

- Let's look at a Resin Transfer Moulding (RTM) workflow
- Underlined in blue are the steps we will discuss

Key Manufacturing Steps:

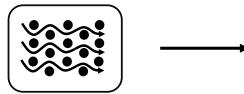
IMPREGNATION STEP

INPUT STEP OUTCOMES

Impregnation

Liquid resin

Impregnated reinforcement


Material properties:

- Resin viscosity
- Resin gel time
- Reinforcement's permeability
- Resin/reinforcement surface tension and contact angle

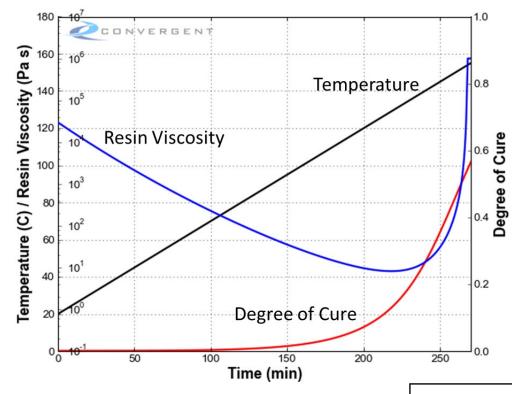
etc.

ANALYSIS

Flow and consolidation management

KPC A158

Filling time, dry spots, micro/macrovoids formation



KPC A203: VISCOSITY

- Viscosity is an indicator of how easily the resin will impregnate the reinforcement
- Viscosity is a function of both <u>temperature and degree of cure</u> and can be described using empirical models such as an Arrhenius-type equation:

$$\mu = Ae^{\frac{\Delta E}{RT}f(\alpha)}$$

Where A is a constant, ΔE is the activation energy, $f(\alpha)$ is the dependency on the degree of cure, α and RT describes the kinetic energy as a function of the temperature, T

KPC A162: GEL TIME

• Gel time indicates when gelation occurs, i.e. when the resin transforms from a liquid to a soft gel and stops flowing

GELATION Liquid \rightarrow Gel

• Gel time <u>depends on degree of cure</u>. Epoxy resins typically gel at a degree of cure of 0.5 while polyester resins gel before a degree of cure of 0.15

KPC A172: THERMAL TRANSFORMATION STEP

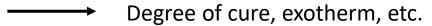
INPUT STEP OUTCOMES

Thermal transformation

Uncured resin ———

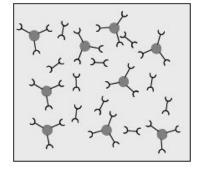
→ Cured resin

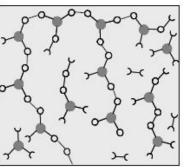
Material properties:


- Resin's cure kinetics
- Resin's heat of reaction
- Resin's thermal conductivity
 - Resin's heat capacity
 - Resin's density
 - Reinforcement's thermal conductivity
 - etc.

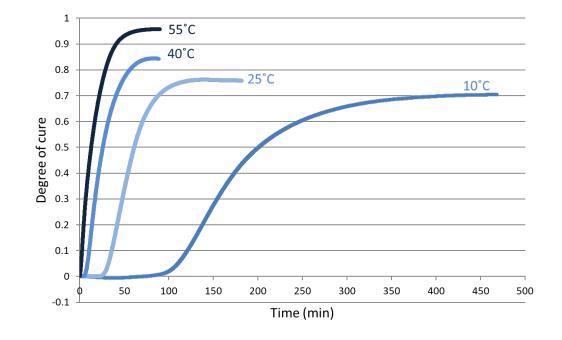
ANALYSIS

Thermal management



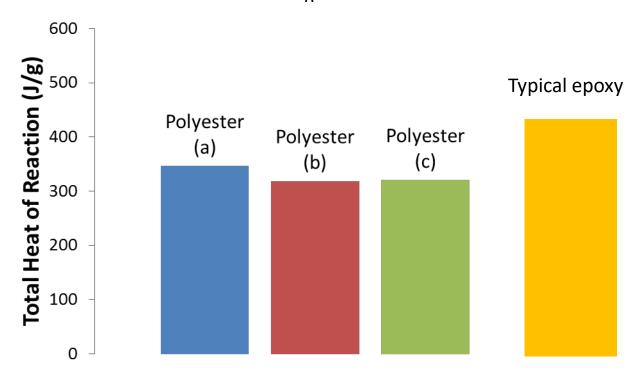

KPC A104: DEGREE OF CURE

- Degree of cure (DOC) is an indication of how far the crosslinking is advanced in a thermoset resin
- DOC is defined with a number between 0 and 1 (or 0% and 100%) where 100% is a fully cured resin


Low Degree of Cure

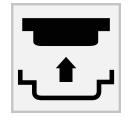
High Degree of Cure

 Degree of cure is dependent on temperature and time (thermal history)



KPC A114: HEAT OF REACTION

- Cure of thermoset resins is an exothermic reaction and heat is generated during the curing process
- A thermoset resin has the potential to release a certain amount of energy while curing, referred to as the total heat of reaction, H_R (unit of J/g)



DEMOLDING STEP

INPUT STEP OUTCOMES

Demolding

Part on tool

Free-standing part

Material properties:

- Resin's cure kinetics
- Resin's glass transition temperature
- Resin's thermal conductivity
 - Resin's heat capacity
 - Resin's density
 - Reinforcement's thermal conductivity

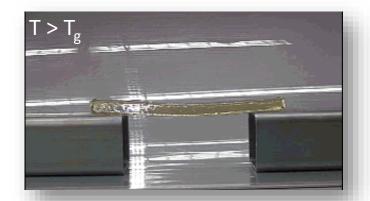
• etc.

ANALYSIS

Thermal management

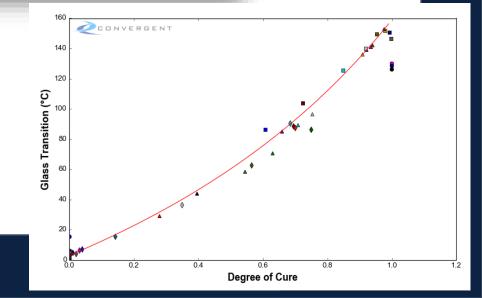
Resin's glass transition temperature

and part's temperature



KPC A102: GLASS TRANSITION TEMPERATURE (Tg)

 When heated above their Tg, thermosets soften and transition from hard, glassy materials to soft, rubbery materials


GLASS TRANSITION $Gel \rightarrow Glass$

- The glass transition temperature is a <u>function of</u> <u>degree of cure</u>
- Typically want to demould below Tg

ASSEMBLY STEP

INPUT STEP OUTCOMES

Assembly

Multiple components ----

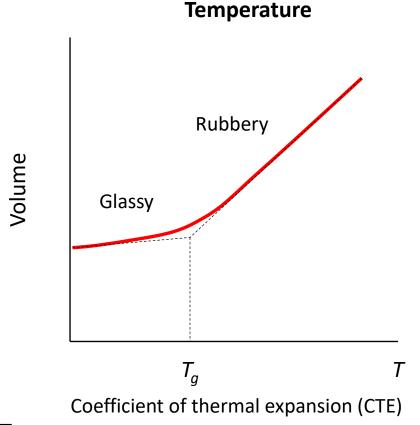
------ Assembly

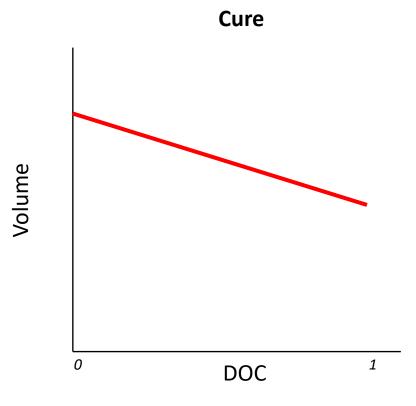
Material properties:

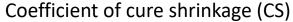
- Resin's cure shrinkage
- Resin's coefficient of thermal expansion
 - Reinforcement coefficient of thermal expansion
 - etc.

ANALYSIS

Residual stress and dimensional control management


Spring in, warpage, residual stresses

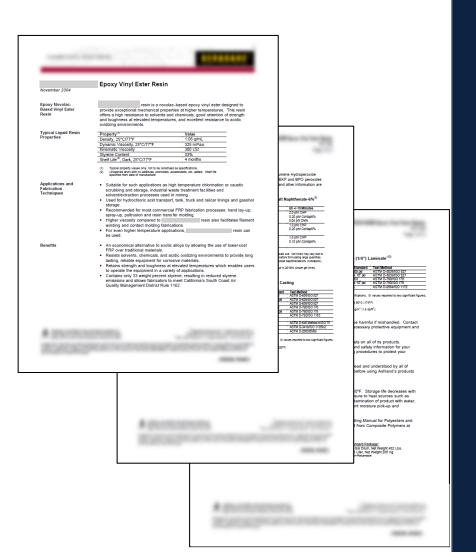


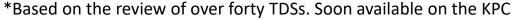


KPC A102: THERMO-VOLUMETRIC BEHAVIOUR

Volume of thermoset resins changes with temperature and cure

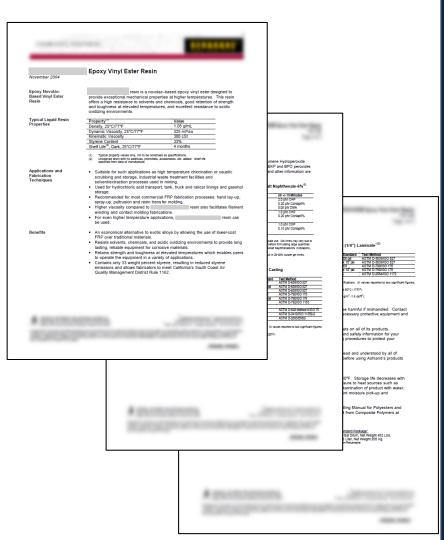
WHAT INFORMATION IS COMMONLY AVAILABLE IN TECHNICAL DATA SHEET?

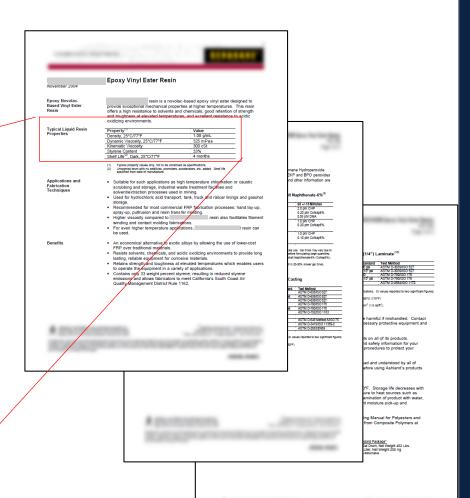

Let's look at neat resin and prepreg material systems



Example Technical Data Sheets

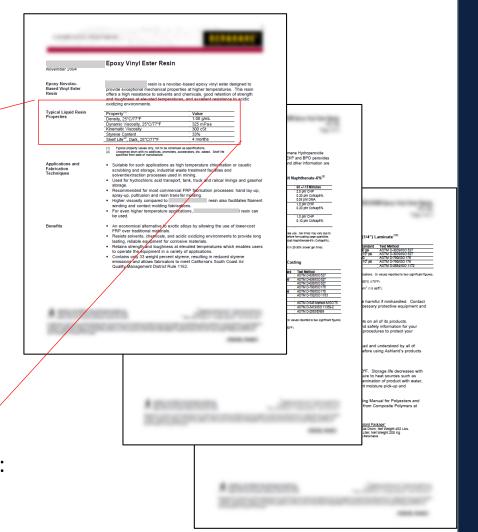
- Technical Data Sheets (TDS) usually focus on design properties and include limited manufacturing properties*
- Viscosity, gel time and a baseline cure cycle are commonly given
- With polyester and vinyl ester, end users can define their own formulations, which further limits the information in a TDS
- The TDS is for the resin, what about the fibre, what about the composite?
- Let's review a vinyl ester resin and epoxy prepreg TDS




- What can we expect from a resin TDS, specifically a vinyl ester or polyester resin?
- This is an 'industrial grade' resin vs an aerospace grade that we'll see next

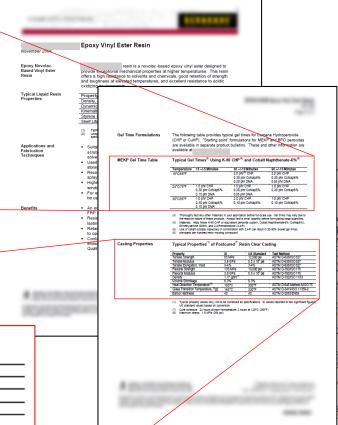
• Example of a common vinyl ester resin

Typical Liquid Resin Properties		
	Property ⁽¹⁾	Value
	Density, 25°C/77°F	1.08 g/mL
	Dynamic Viscosity, 25°C/77°F	325 mPas
	Kinematic Viscosity	300 cSt
	Styrene Content	33%
	Shelf Life ⁽²⁾ , Dark, 25°C/77°F	4 months



• Example of a common vinyl ester resin

Typical Liquid Resin Properties	Property ⁽¹⁾	Value
	Density, 25°C/77°F	1.08 g/mL
	Dynamic Viscosity, 25°C/77°F	325 mPas
	Kinematic Viscosity	300 cSt
	Styrene Content	33%
	Shelf Life ⁽²⁾ , Dark, 25°C/77°F	4 months


Kinematic viscosity, ν is the ratio of dynamic viscosity, μ to density, ρ :

$$\upsilon = \frac{\mu}{\rho}$$

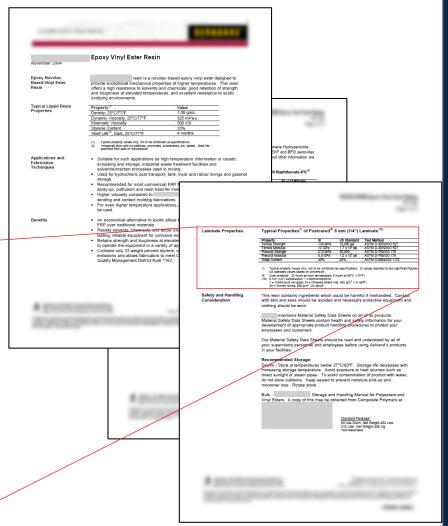
MEKP Gel Time Table	Typical Gel	Typical Gel Times ⁽³⁾ Using K-90 CHP ⁽⁴⁾ and Cobalt Naphthenate-6% ⁽⁵⁾				
	Temperature	15 +/-5 Minutes	30 +/-10 Minutes	60 +/-15 Minutes		
	18°C/65°F		2.0 phr ⁽⁶⁾ CHP 0.30 phr CoNap6% 0.20 phr DMA	2.0 phr CHP 0.20 phr CoNap6% 0.05 phr DMA		
	24°C/75°F	1.5 phr CHP 0.30 phr CoNap6% 0.15 phr DMA	1.5 phr CHP 0.20 phr CoNap6% 0.05 phr DMA	1.0 phr CHP 0.20 phr CoNap6%		
	30°C/85°F	1.0 phr CHP 0.30 phr CoNap6% 0.10 phr DMA	2.0 phr CHP 0.10 phr CoNap6%	1.0 phr CHP 0.10 phr CoNap8%		

Casting Properties	Typical Properties ⁽¹⁾ of Postcured ⁽⁷⁾ Resin Clear Castin	ng
		_

Property	SI	US Standard	Test Method
Tensile Strength	85 MPa	12,500 psi	ASTM D-638/ISO 527
Tensile Modulus	3.6 GPa	5.2 x 10° psi	ASTM D-638/ISO 527
Tensile Elongation, Yield	34%	3-4%	ASTM D-638/ISO 527
Flexural Strength	130 MPa	19,000 psi	ASTM D-790/ISO 178
Flexural Modulus	3.8 GPa	5.5 x 10° psi	ASTM D-790/ISO 178
Density	1.17 g/cm ³	•	ASTM D-792/ISO 1183
Volume Shrinkage	8.3%	8.3%	
Heat Distortion Temperature (6)	150°C	300°F	ASTM D-648 Method A/ISO 75
Glass Transition Temperature, Tg2	165°C	330°F	ASTM D-3419/ISO 11359-2
Barcol Hardness	40	40	ASTM D-2583/EN59

ions. SI values reported to two significant figures

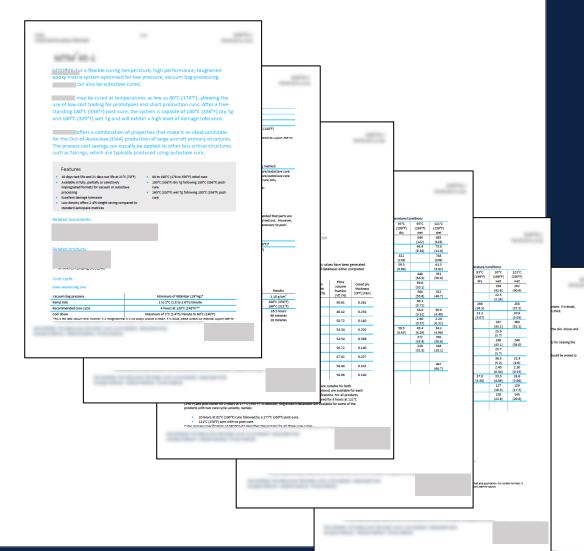
s on all of its products. d safety information for your procedures to protect your ad and understood by all of fore using Ashland's products

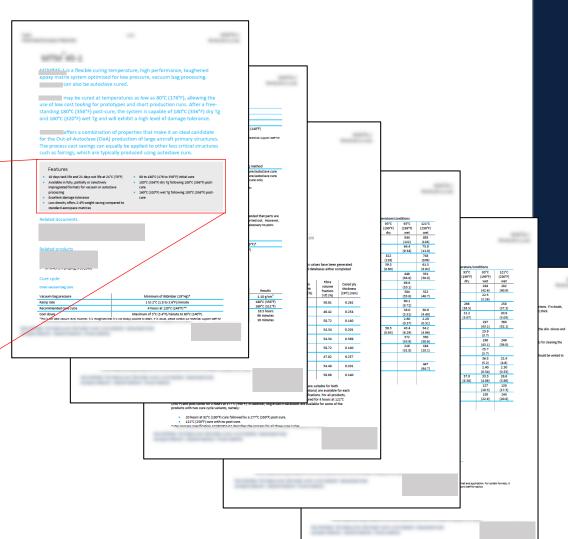

(1.5 oz/t²);

Laminate Properties

Typical Properties⁽¹⁾ of Postcured⁽⁹⁾ 6 mm (1/4") Laminate⁽¹⁰⁾

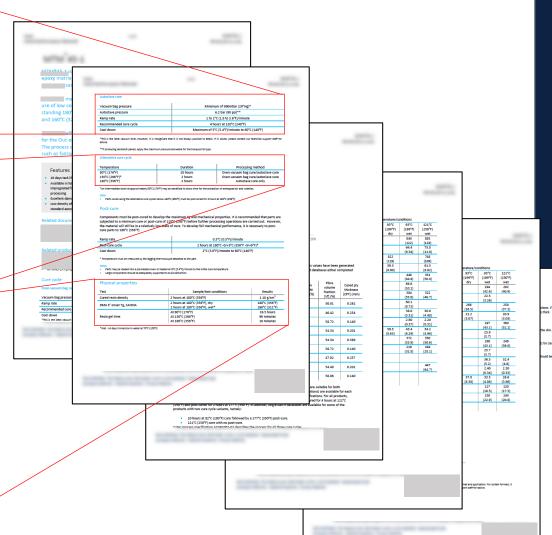
Property	SI	US Standard	Test Method
Tensile Strength	130 MPa	19,000 psl	ASTM D-3039/ISO 527
Tensile Modulus	12 GPa	1.7 x 10° psl	ASTM D-3039/ISO 527
Flexural Strength	210 MPa	30,000	ASTM D-790/ISO 178
Flexural Modulus	8.5 GPa	1.2 x 10° psi	ASTM D-790/ISO 178
Glass Content	40%	40%	ASTM D-2584/ISO 1172

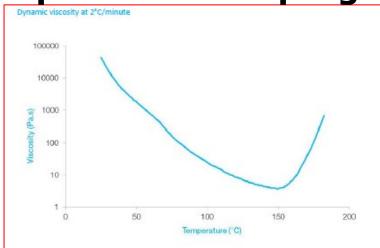

- Typical property values only, not to be construed as specifications. SI values reported to two significant figures;
 US standard values based on conversion.
- Cure schedule: 24 hours at room temperature: 6 hours at 80°C (175°F)
- (10) 6 mm (1/4") Construction V/M/M/Wr/M/Wr/M V = Continuous vell glass; M = Chopped strand mat, 450 g/m² (1.5 oz/t²); Wr = Woven roving, 800 g/m² (24 oz/yd²)


- This is an aerospace grade material
- This TDS focuses on the resin but some information is specific to a certain prepreg model
- What can we expect from a prepreg TDS?

Features

- 10 days tack life and 21 days out life at 21°C (70°F)
- Available in fully, partially or selectively impregnated formats for vacuum or autoclave processing
- Excellent damage tolerance
- Low density offers 2-4% weight saving compared to standard aerospace matrices
- 80 to 180°C (176 to 356°F) initial cure
- 180°C (356°F) dry Tg following 180°C (356°F) postcure
- 160°C (320°F) wet Tg following 180°C (356°F) postcure

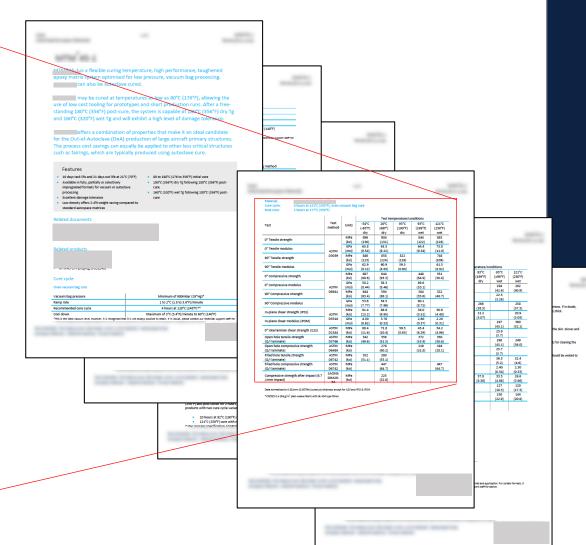



Autociave cure	
Vacuum bag pressure	Minimum of 980mbar (29"Hg)*
Autoclave pressure	6.2 bar (90 psi)**
Ramp rate	1 to 2°C (1.8 to 3.6°F)/minute
Recommended cure cycle	4 hours at 120°C (248°F)
Cool down	Maximum of 3°C (5.4°F)/minute to 60°C (140°F)

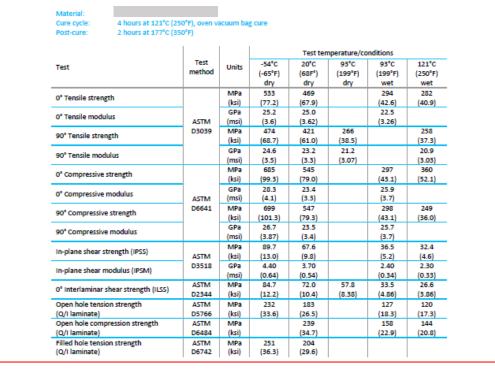
Alternative cure cycle		
Temperature	Duration	Processing method
80°C (176°F)	20 hours	Oven vacuum bag cure/autoclave cure
130°C (266°F)*	2 hours	Oven vacuum bag cure/autoclave cure
180°C (356°F)	2 hours	Autoclave cure only

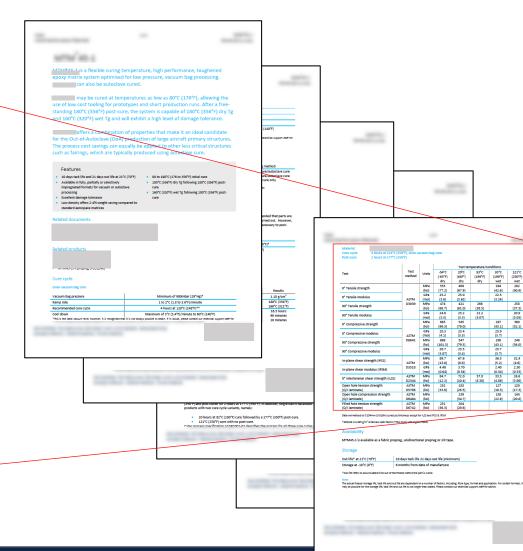
Test	Sample/test conditions	Results
Cured resin density	2 hours at 180°C (356°F)	1.18 g/cm ³
DMA E' onset Tg, SACMA	2 hours at 180°C (356°F), dry 2 hours at 180°C (356°F), wet*	180°C (356°F) 160°C (311°F)
Resin gel time	At 80°C (176°F) At 130°C (266°F) At 180°C (356°F)	16.5 hours 90 minutes 10 minutes

Mechanical properties

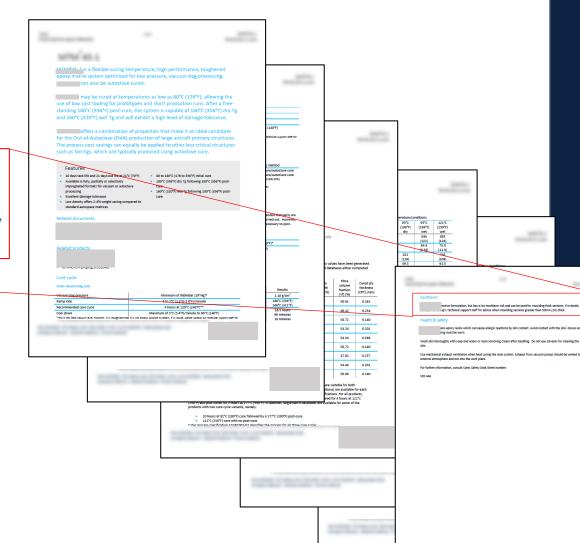

Several mechanical property databases including both lamina and laminate level A and B basis values have been generated or are in the process of being generated. The following are the product forms with associated databases either completed or planned:

1						
Material Specification	Nomenclature	Fibre/Style	Fibre areal weight [FAW] (g/m²)	Resin weight [RW] (%)	Fibre volume fraction [vf] (%)	Cured ply thickness [CPT] (mm)
1001-03		AQJII/ 8HS fabric	288	35	50.01	0.262
1001-04		E-glass/ 7781 8HS fabric	300	35	46.42	0.254
1001-06		IM7/ Unidirectional	145	32	58.72	0.140
1001-07		AS4/ 3K PW fabric	193	36	54.34	0.201
1001-10		AS4/ 6k 5HS fabric	375	36	54.34	0.389
1001-11		AS4/ Unidirectional	145	32	58.72	0.140
1001-12		S2-glass/ 8HS fabric	300	35	47.02	0.257
1001-13		G30-500/ 3K PW fabric	193	36	54.48	0.201
1001-14		HTS5631/ Unidirectional	145	32	58.86	0.140




				Test ten	nperature/co	nditions	
Test	Test	Units	-54°C	20°C	93°C	93°C	121°C
101	method	0	(-65°F)	(68F°)	(199°F)	(199°F)	(250°F)
			dry	dry	dry	wet	wet
0° Tensile strength		MPa	896	904		844	885
o- Tensile strength		(ksi)	(130)	(131)		(122)	(128)
0° Tensile modulus		GPa	65.8	63.5		64.4	75.8
o Tensile modulus	ASTM	(msi)	(9.54)	(9.21)		(9.34)	(11.0)
000 Tancila strangth	D3039	MPa	846	858	822		748
90° Tensile strength		(ksi)	(123)	(124)	(119)		(109)
90° Tensile modulus		GPa	62.9	60.9	59.3		61.5
50 Tensile modulus		(msi)	(9.12)	(8.83)	(8.60)		(8.92)
0° Compressive strength		MPa	687	644		448	351
o compressive strength		(ksi)	(99.6)	(93.3)		(64.9)	(50.8)
0° Compressive modulus		GPa	58.2	58.3		69.6	
o compressive modulus	ASTM	(msi)	(8.44)	(8.46)		(10.1)	
90° Compressive strength	D6641	MPa	644	594		384	322
90 Compressive strength		(ksi)	(93.4)	(86.1)		(55.6)	(46.7)
90° Compressive modulus		GPa	53.6	54.5		60.1	
90 Compressive modulus		(msi)	(7.77)	(7.90)		(8.72)	
In-plane shear strength (IPSS)		MPa	91.4	68.6		38.0	30.9
m-plane shear shenghi (1835)	ASTM	(ksi)	(13.2)	(9.95)		(5.51)	(4.48)
In-plane shear modulus (IPSM)	D3518	GPa	4.30	3.70		2.60	2.20
iir piane silear modulus (ir sivi)		(msi)	(0.62)	(0.53)		(0.37)	(0.31)
0° Interlaminar shear strength (ILSS)	ASTM	MPa	80.4	71.8	59.5	43.4	34.2
• , ,	D2344	(ksi)	(11.6)	(10.4)	(8.63)	(6.29)	(4.96)
Open hole tensile strength	ASTM	MPa	342	356		372	350
(Q/I laminate)	D5766	(ksi)	(49.6)	(51.5)		(53.9)	(50.6)
Open hole compressive strength	ASTM	MPa		278		219	194
(Q/I laminate)	D6484	(ksi)		(40.2)		(31.8)	(28.1)
Filled hole tensile strength	ASTM	MPa	352	380			
(Q/I laminate)	D6742	(ksi)	(51.1)	(55.1)			
Filled hole compressive strength	ASTM	MPa		447			447
(Q/I laminate)	D6742	(ksi)		(64.7)			(64.7)
Compressive strength after impact (6.7	SACMA	MPa		225			
J/mm impact)	SRM2R-	(ksi)		(32.6)			
, , ,	94	()		(/			

Material:



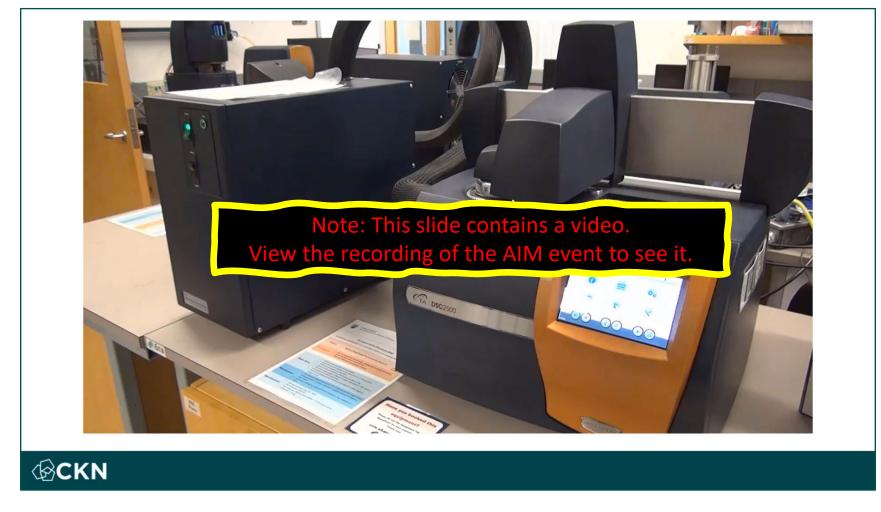
(18.3) (17.3) 158 144 (22.9) (20.8)

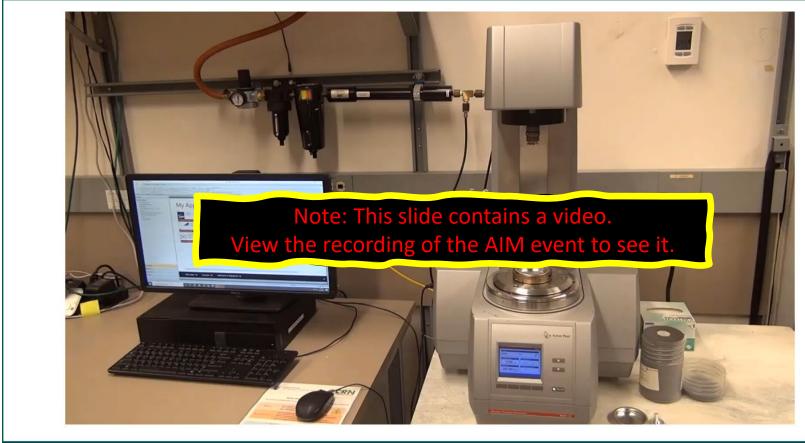
Exotherm

is a reactive formulation, but has a low exotherm risk and can be used for moulding thick sections. If in doubt, contact the Group's Technical support staff for advice when moulding sections greater than 50mm (2in) thick.

HOW ARE THE KEY MANUFACTURING PROPERTIES CHARACTERIZED?

Gel timer, rheometer, differential scanning calorimeter


KPC M101: GEL TIME


KPC M100: DEGREE OF CURE

KPC A203: RHEOMETER

Summary

• There are a number of important resin properties and concepts one needs to understand when developing, optimizing, or troubleshooting a manufacturing process

Manufacturing Step	Analysis Type	Resin Property
		Degree-of-cure
		Glass Transition (vitrification)
Storage, formulation,	Thermo-Chemical	Heat of Reaction
impregnation, thermal transformation, demolding, secondary thermal transformation	Analysis	Density
		Specific Heat Capacity
		Thermal Conductivity
	Flow-Compaction	Viscosity
	Analysis	Gelation
		(Visco) Elastic Constants
Assembly	Stress-Deformation Analysis	Thermal Expansion
	7 (11d1 y 313	Cure Shrinkage

Thank you for joining us!

Keep an eye out for announcements on the next AIM events And don't forget to visit the KPC for more information:

https://compositeskn.org/knowledge-in-practice-centre/

Questions?

For more information on future dates and times visit:

compositeskn.org

